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The Genetic Algorithm (GA) is a blueprint for writing computer programs ca-
pable of solving search and optimization problems. The GA blueprint describes an
iterative search process that seeks to improve the quality of an initial random set of
solutions (known as a “population of specimens”) with respect to some user-defined
optimization criteria. All of the components of this iterative search process mimic
Darwinian biological evolutionary processes such as mating, recombination, mutation,
and survival of the fittest. Thus, the GA is an evolutionary approach to search and
optimization.

The GA has been applied to thousands of research and industrial applications
across numerous domains of science. Due to its success and popularity, researchers
have attempted to improve various aspects of the GA search process over the years.
However, the impact of the mating strategy, which determines how existing solutions
to a problem are paired during the genetic search process to generate new and better
solutions, has so far been neglected in the rich and vast GA literature.

The long-standing conventional mating strategy, which has been used for decades
in implementations of the GA, is based on the random selection of mating partners.

Thisparadigm-hasknown issues. First, due to its stochastic nature, the conventional

www.manaraa.com



mating strategy does not guarantee that the solutions paired to generate new solu-
tions have orthogonal (or independent) information content. This leads the GA to
under-utilize the information available for the genetic search process. Second, the
conventional mating strategy promotes highly-fit solutions to mate more often than
others. These highly-fit solutions eventually overrun the entire set of solutions during
the genetic search process, leading to issues of premature convergence to suboptimal
solutions.

The goal of this work is to show that the GA search process can be expedited,
with the quality of its solutions improved, by replacing the conventional mating strat-
egy with more sophisticated ones that are inspired from the Darwinian principle
of "opposites-attract.” The mating strategies proposed in this work improve over
the conventional mating strategy, in which specimens (or solutions) have no mating
choice, by “endowing” specimens in the GA population with mating-instincts that
promote a more diverse pairing of solutions. The end result is an improved utilization
of the information available for the genetic search process to discover new and better
solutions and, consequently, a more efficient sampling of the solution search space of
complex optimization problems.

A total of five novel “instinct-based” mating strategies are proposed in this work.
Four of these mating strategies are designed as single-population GA mating strate-
gies, and one as a multi-population GA mating strategy. The five proposed mat-
ing strategies are collectively referred to by the acronym IM-GA, which stands for
Instinct-Based Mating in Genetic Algorithms. To measure the effectiveness of the pro-

posed mating strategies, they were tested on two well-known, complex optimization
iii
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problems from the domain of supervised classification: 1) the 1-NN Tuning prob-
lem (“Testbed Problem 17), and 2) the Optimal Decision Forests problem (“Testbed
problem 2”). The 1-NN Tuning problem involves the search for optimal subsets of
examples and attributes that simultaneously maximize the accuracy and minimizes
the classification costs of the 1-NN classifier. The Optimal Decision Forests prob-
lem involves the search for highly-accurate and compact decision tree classifiers that
can be grouped into ensembles to simultaneously maximize their combined voting
classification accuracy while minimizing the overall classification costs.

Testbed Problem 1 was solved by an improved implementation of a well-known
GA, the RK-GA (hereinafter “baseline RK-GAy"). Testbed Problem 2 was solved by
a novel GA that was implemented for the purposes of this research, the baseline TM-
GAp. Rigorous experiments were performed to evaluate the performances of these two
GAs both with and without the proposed IM-GA “instinct-based” mating strategies.
The various data sets used in the experiments were taken from the well-known UCI
Machine Learning Repository.

The experimental results indicated a statistically significant increase in the search
speed of the GA when the IM-GA mating strategies were applied to the two chosen
testbed problems. Furthermore, this increased search speed did not come at the
cost of the quality of the discovered solutions and required only negligible additional
computational overhead. Therefore, this work shows that more sophisticated
mating strategies can indeed improve the genetic search process over the

conventional mating strategy.

v
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To the author’s best knowledge, no other work has so far been developed that
combines both the single-population and multi-population versions of the GA with
the concept of “instinct-based” mating. Furthermore, the fact that the rich GA
literature has devoted less attention to mating strategies than what is deserved gives

this research work a “pioneering flavor.”
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CHAPTER 1

Introduction

The Genetic Algorithm (GA) is a popular approach to solving search and optimiza-
tion problems. The GA is a blueprint for writing programs that are capable of finding
good solutions to complex search and optimization problems under constrained com-
putational requirements (Holland 1975). The GA blueprint describes an iterative
optimization process. This process operates on a (initially) random set of solutions
to a problem (because it is assumed that optimal solutions are unknown) and im-
proves these solutions over a great number of iterations guided by some user-defined
optimization criteria.

A program written to implement the GA blueprint is known as an “implementation
of the GA”.! Such programs will have an “evolutionary flavor” to them. That is
because the way solutions to optimization problems are represented in memory, as
well as how the operations applied iteratively to existing solutions to generate better

solutions are implemented, all mimic Darwinian biological evolutionary process such

!An implementation of the GA is a program written to implement the iterative search process
described by the GA blueprint. This implementation should have: 1) a representation of solutions to
an optimization problem known as specimens, 2) a process to randomly initialize the specimens, and
3) the implementation of an iterative process that improves the initially random solutions through
functions, or operators, that mimic the Darwinian evolutionary processes of mating, recombination,
mutation) andsurvival'of the fitness. See Section 3.2 for a detailed overview of the GA.
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2

as mating (the paring of existing solutions to “mate”), recombination (the exchange
of genetic information between paired solutions to generate new and improved ones),
mutation (random distortions applied to the genetic information of newly generated
solutions), and survival of the fittest (solutions promising more favorable optimization
of a problem “survive” while all others are “killed-off”).2

Due to its immense generality, the GA has been successfully applied to numer-
ous search and optimization problems across various domains of science. Over the
years, researchers have “pushed the envelope” in applying the GA to numerous chal-
lenging, real-world optimization problems such as the automated computer design of
industrial equipment, electronic circuits, trading systems, water distribution systems,
turbines, wings, medicines, job scheduling systems, routing systems, and control sys-
tems, among numerous others problems (Karr and Freeman 1998; Haupt and Haupt
2004; Popescu, Popescu, and Mastorakis 2009), and in attempting to improve many
aspects of the GA iterative search process.

The mating strategy (or “mating”) is a key component of the genetic search pro-
cess. Mating determines how existing solutions to a problem are paired with the goal
of exchanging information to generate better solutions (e.g. mimicking Darwinian
natural adaptation). Unfortunately, the impact of the mating strategy on the per-
formance of genetic search has so far been neglected in the GA literature (Quirino
and Kubat 2010). While numerous previous research works have sought to optimize

genetic search by improving the other various components of the GA iterative process

2The implementations of the GA processes of mating, recombination, mutation, and survival as
functions are referred to as operators (i.e. the recombination operator and the mutation operator).
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(e.g. initialization, recombination, and survival) (Rozsypal and Kubat 2003; Ishibuchi
and Nakashima 2000; Ho, Liu, and Liu 2002), research attempts to improve mating
in the GA is still an area of scarce publications (Quirino and Kubat 2010).

There are two main reasons for the lack of research interest in optimizing the
mating strategy in genetic search. The primary reason is the existence of a long-
standing, conventional mating strategy which can be very easily used in practically
all implementations of the GA. This conventional mating strategy, which has been
successfully applied for decades in numerous applications of the GA, does not require
any domain-specific knowledge (i.e. it is problem-independent) and simply relies on
probabilistic distributions, built based on the user-defined fitness-function,® to ran-
domly pair existing solutions to generate new solutions (or recombination).

The second reason for the lack of research interest on the optimization of mat-
ing in genetic search is that improving the mating process requires the adoption of
problem-dependent parameters. Performing more “informed” pairing of solutions in
the GA requires problem-dependent optimization criteria to be considered during
the mating process. The optimization criteria must somehow dictate how existing
solutions should be optimally paired in a manner that maximizes their potential to
generate better solutions that optimize the specific objectives of the problem under

investigation. Optimizing mating in genetic search is a problem-dependent task. In-

3In Genetic Algorithms, the fitness-function is a user-defined function that measures the quality
of the solutions generated through genetic search for a specific search or optimization problem. The
genetic search seeks to find solutions that optimize the fitness-function. Hence, the definition of
the fitness-function is a key issue in implementations of the GA. The fitness-function guides the
genetic search by pointing out which solutions are more favorable than others. The terms of the
fitness-functions reflect the different optimization objectives of a search problem, e.g. when using
a GA to optimize the accuracy of a classifier in a supervised learning problem, the fitness-function
may be defined as the accuracy of the GA-generated classifiers.

www.manaraa.com



4
tuitively, this complicates both the design and implementation of the GA mating

process. As a result, many researchers who are primarily interested on using the GA
as a “black-box” optimization tool in some arbitrary problems, will tend to adopt
the more conventional and generalized implementations of the GA over more custom
ones.

The tendency of the conventional mating strategy in genetic search is to promote
the pairing of solutions that promise the optimization of the fitness-function. That
is, the pairing of solutions to optimize the user-defined objectives of a given problem.
At first glance, this natural tendency of the conventional mating strategy seems very
adequate. However, conventional mating is known to lead the GA to prematurely
converge to suboptimal solutions (Shamir, Saad, and Marom 1993). The main issue
with the conventional mating strategy is that it favors the pairing of more
“fit” solutions for mating without regard to the relative diversity of the
information content of the paired solutions. A clear example of this “design
flaw” is that under the conventional mating strategy a solution is even allowed to
“mate-with-itself” due to the random pairing process. When this process is repeated
over many generations, it leads the GA population to be eventually overrun by highly-
fit solutions. The population ends up dominated by what are essentially “duplicates”
of the same highly-fit solution. At this stage, the genetic search ends due to an
undesired premature convergence to a generally suboptimal solution.

Understanding how the degenerative loss of information occurs in the GA, and
leads the population to be overrun by highly-fit solutions, requires examining the

sources and sinks of information in the GA. From the very first iteration, the GA
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search process starts loosing small amounts of the information available in its popula-
tion of solutions through the combined process of recombination and survival. When a
new solution is generated through recombination of an arbitrary pair of solutions and
then used to subsequently replace another existing solution in the population through
survival of the fittest, the information that was available in the replaced solution is
simply lost (or “information sink”). If the replaced solution was very different from
the newly generated solution, then a lot of information has been lost. And even in
the newly generated solution replaced one of its parent solutions, than at least some
information has been lost because a child solution generally contains only partial in-
formation from each of its parents, which is the nature of recombination. In summary,
the GA starts converging to a solution (optimal or not) from the very beginning of
its run. While different operators, such as the mutation operator, are introduced to
retard the effects of information loss in the GA, their impact is somewhat limited. For
example, using high mutation rates to inject new information into the population (or
“information source”) can lead the genetic search to essentially mimic random search,
since newly generated solutions would be very different from their parents (i.e. no
Darwinian adaptation would take place). On the other hand, low mutation rates
cannot efficiently inject new information into the population (Rozsypal and Kubat
2003; Shamir, Saad, and Marom 1993).

What the above discussion alludes to is that improving genetic search requires
the adoption of mechanisms capable of slowing-down the loss of information that
naturally occurs in the genetic search process. This is achieved by optimizing the use

of the information available in the existing solutions to a problem to generate new and
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better solutions in each iteration of the GA. Slowing down the information loss helps
prevent premature convergence to sub-optimal solutions by retaining more diversity
of information in the solution pool. This consequently improves the ability of the GA
to more effectively sample the solution space of a problem and find better solutions.
Dealing with information loss rate in genetic search is a critical consideration to
improving the GA.

Mating is a key component of the genetic search process that can be optimized
to reduce information loss in the GA. That is because, from among the various ge-
netic operators, the mating strategy is the one which determines how information is
used to generate new solutions. The mating process can be optimized in the GA by
abandoning the conventional mating strategy, which exacerbates the information loss
by leading highly-fit solutions to overrun the GA population, and adopting better
mating strategies that promote more diverse pairing of solutions. Moreover, promot-
ing diverse pairing of solutions entails that solutions paired for recombination should
“complement” each other according to some problem-dependent criteria. That is be-
cause paired solutions that “complement” each other according to problem-dependent
criteria must posses orthogonal (or independent) information contents relative to each
other. For example, a pair of decision tree classifiers that tend to misclassify differ-
ent testing examples, where the classification error is a problem-dependent criteria
in the domain of supervised learning, must have been trained with different input
parameters (i.e. different subsets of examples and attributes). That is, the behav-
ior of different solutions with respect to a problem-dependent criteria reflects their

information content relative to each other.
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In addition, promoting diverse pairing of solutions in the sense described above
would also allow the GA to more effectively sample the solution spaces of optimization
problems in search for new solutions that improve over existing ones. This may even
lead the GA to converge faster to optimal solutions. Because of the stochastic (ran-
dom) nature of conventional mating, and also because of its lack of consideration for
problem-dependent optimization criteria, conventional mating cannot guarantee that
solutions are optimally paired in a way that they somehow complement each other
along some problem-dependent optimization criteria. In other words, conventional
mating does not make optimal use of the information available in the GA population
of solutions in order to optimize genetic search.

The goal of this work is to show that more sophisticated mating strategies can
indeed optimize genetic search and lead the GA to faster convergence without im-
pacting the quality of its generated solutions. To this end, a total of five (5) novel
“instinct-based” mating strategies are proposed in this work to improve over the
long-standing, conventional mating strategy where specimens have no mating choice
(described above). The five proposed mating strategies “endow” specimens in the
GA population with “mating instincts” that guide them in their selection of mating
partners that “complement” their own abilities to optimize some problem-dependent
optimization criteria. As a result, the proposed mating strategies promote more di-
verse pairing of specimens having orthogonal (or independent) information content.
This process optimizes the genetic search by improving the utilization of
the information available in the GA population for the generation of better

solutions, slowing down the information loss inherent to the genetic search

www.manaraa.com



8

process, and allowing the GA to more effectively and diversely sample the
search spaces of optimization problems.

The concept of “instinct-based” mating proposed in this work was inspired from
the natural Darwinian principle of “opposites-attract” that is so common in nature.
Darwin pointed out in his Descent of Man (1859) that some animals give prefer-
ence to mating partners whose abilities “complement” their own. He mentioned as
an example that in those bird species where nest-building is a male responsibility,
females sometimes tend to instinctually test the nest-building ability of potential
mates. Furthermore, more recent research has indicated that human females tend to
prefer partners with a dissimilar genetic makeup (ScienceDaily 2009). Surprisingly,
these concepts have so far been neglected in applications of Genetic Algorithms. The
fact that the rich GA literature has devoted to mating strategies less attention than
what is deserved gives this work a “pioneering flavor.”

The five “instinct-based” mating strategies proposed in this work are collectively
referred to by the acronym IM-GA, which stands for Instinct-Based Mating in Genetic
Algorithms. Four of these strategies are designed as single-population mating strate-
gies? and one as multi-population mating strategy.® To evaluate the impact of these
proposed mating strategies on the performance of the GA, two well-known testbed

problems were chosen from the domain of supervised classification. The chosen

4The single-population GA uses one single population of specimens, or a single pool of potential
solutions, to solve optimization problems.

5The multi-population GA uses multiple populations of specimens, or multiple pools of potential
solutions, to solve an optimization problem. Generally, different populations evolve independently
with periodic interbreeding through exchange of specimens among the population. The design of
a multi-population GA is more complex than that of a single-population GA because of the added
complexities of choosing from which populations parent specimens should come from and into which
populations children specimens should be inserted to (i.e. migration).
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testbed problems were: 1) the 1-NN Tuning Problem (hereinafter “Testbed Prob-

lem 17) and 2) the Optimal Decision Forests Problem (hereinafter “Testbed Prob-
lem 27). Both testbed problems are complex optimization problems categorized as
NP-hard (Quirino and Kubat 2010) and NP-complete (Chandra and Yao ; Okun,
Valentini, and Re 2011) problems, respectively (see Section 2.2). This means that
no algorithms capable of solving these problems in polynomial time® have yet been
developed. Both Testbed Problems 1 and 2 are described in detail in Chapter 3.
Since mating is only a component of the GA search process, two GAs were im-
plemented to facilitate the application of the proposed IM-GA mating strategies to
the optimization of Testbed Problems 1 and 2, respectively. To apply the IM-GA
mating strategies to the optimization of Testbed Problem 1, a well-known GA called
“RK-GA” was first re-implemented from the literature to find optimal 1-NN clas-
sifiers (Rozsypal and Kubat 2003). Moreover, the fitness-function of RK-GA was
improved and the resulting GA, referred to as the baseline RK-GAy, was then used
as the baseline for all experiments with Testbed Problem 1. Similarly, to apply the
IM-GA mating strategies to the optimization of Testbed Problem 2, a novel GA called
the baseline TM-GA, was designed and implemented specifically for this research to
discovery optimal ensembles of decision tree classifiers (or optimal decision forests).
Note that both the baselines RK-GAy and the TM-GA, were designed to work
with the conventional mating strategy. Therefore, it was imperative to first evaluate

their performances without “instinct-based” mating to ensure that they were not

6Search and optimization problems that can be solved in the polynomial order of computational
time-complexity are considered cheap problems.
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strawman, or weak methods that would be easily improved by the application of the
IM-GA “instinct-based” mating strategies. To this end, the performance of both RK-
GAp and TM-GA, using the conventional mating strategy was evaluated first through
various experiments using 24 benchmark data sets from the UCI Machine Learning
Repository (Newman and Merz 1998). These experiments compared the performance
of the baselines RK-GAy and TM-GA, against those of state-of-the-art techniques
designed to solve Testbed Problems 1 and 2, respectively. The experiments yielded
a good set of baseline results for the performance of the baselines RK-GAq and TM-
GAy using the conventional mating strategy. Then, the five proposed IM-GA mating
strategies were introduced into the baselines RK-GAqg and TM-GAg, replacing the
conventional mating strategy with “instinct-based” ones, and the experiments were
rerun. Finally, the two sets of experimental results attained, (1) with conventional
mating, and (2) with “instinct-based” mating, were compared to evaluate the impact
of the IM-GA mating strategies on the performances of RK-GAy and TM-GA,.

The experimental results presented in Chapter 5 confirmed that the proposed
IM-GA “instinct-based” mating strategies can accelerate the GA without impacting
the quality of the generated solutions. Furthermore, the results also indicated that
the faster convergence attained required only negligible additional GA computational
time. Thus, the conclusion is that genetic search can indeed be optimized
by the use of more sophisticated “instinct-based” mating strategies in the

GA mating process.
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1.1 Motivation and Research Objectives

The major motivation of this work is the fact that the impact of the mating strategy
on the performance of genetic search has been neglected in the GA literature and in
real-world applications of the GA. Over the years, researchers have proposed many
improvements to the various components of the GA search process, components other
than the mating strategy (Rozsypal and Kubat 2003; Ishibuchi and Nakashima 2000;
Ho, Liu, and Liu 2002).

For decades, a single paradigm for mating strategy has dominated implementa-
tions of the GA across various fields of science: random selection of mating partners
according to probabilistic distributions based on the fitness-function. This paradigm
has known issues (Shamir, Saad, and Marom 1993). First, it does not guarantee
that GA-generated solutions are paired based on their abilities to “complement” each
other in maximizing some problem-dependent optimization criteria. This is due to
the purely random selection of the mating partners promoted by the conventional
mating strategy. As a result of this “design flaw”, the conventional mating strategy
can severely under-utilize the diversity of information available in the GA population
for the generation of new and better solutions in each iteration of the genetic search.
Conventional mating inadvertently guides the genetic search into allowing highly-fit
specimens to overrun the GA population. This issue is known as premature conver-
gence to suboptimal solutions. Mitigating this issue, by proposing newer and more

sophisticated mating strategies, is a major motivation this work.
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Another major motivation of this work is to encourage other researchers to extend
the proposed ideas of “instinct-based” mating to speed up genetic search in their own
applications. The GA is one of the most competitive and frequently adopted heuristic
approaches to search and optimization, having been employed in countless real-world
industrial problems having large and complex search spaces (Safe, Carballido, Pon-
zoni, and Brignole 2004; Man, Tang, and Kwong 1996; Stender 1993). In some
industrial applications of the GA, a single fitness evaluation can require anywhere
from minutes to days to complete (Albert 2002). Those are prohibitive costs! Appli-
cations of the GA having prohibitively costly fitness evaluations can greatly benefit
from an improved mating process that requires less fitness evaluations to discover
comparably, or perhaps even better, solutions. This is a major motivation of this
work, to show that the GA mating process can be improved by more sophisticated
mating strategies that promote more diverse and efficient sampling of the solution
search space of optimization problems.

The primary set of research objectives of this work is concerned with speeding up
genetic search through improved mating strategies. The secondary set of objectives
is concerned with the development and/or improvement of the instruments needed
to both achieve and evaluate the impact of the primary set of objectives. In total,

the research objectives of this work are five fold:

e Research Objective 1: To design and implement five (5) novel “instinct-based”

mating strategies that improve over the conventional mating strategy, lead the
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GA to faster convergence without impacting the quality of generated solutions,

and require minimal additional computational overhead.

Research Objective 2: To show that the proposed “instinct-based” mating
strategies can be applied to optimize genetic search in two complex testbed

problems from the domain of supervised classification.

Research Objective 3: To propose principles that simplify to recognition of
useful “mating-instincts” in different optimization problems in order to facilitate

the extension of the proposed ideas to other real-world applications of the GA.

Research Objective 4: To design and implement a new GA capable of discov-
ering both accurate and compact ensembles of decision trees (decision forests).
The goal is to improve the interpretability of decision forests, which has been
lost in applications of the classical ensemble learning methods (e.g. Bagging,
AdaBoost, and Random Forest). The classical methods require large ensembles
of large decision trees to work properly from a statistical point of view (reducing
classifier variance through averaging), which harms the interpretability of the

decision forests.

Research Objective 5: To improve the original RK-GA, which was designed
to discover optimal 1-NN classifiers (i.e. accurate and compact), by modifying
its fitness-function with automatically-set weight parameters based on data set
relevant features. The goal is to eliminate the need for manual weight parameter

tuning.in-the fitness-function of RK-GA.
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1.2 Research Challenges

Various challenges were involved in completing each of the research objectives de-
scribed in Section 1.1. The research challenges varied from the design of new mating
strategies capable of optimizing genetic search over the long-standing, conventional
mating strategy, to the implementation of GAs capable of solving challenging opti-
mization problems, such as the 1-NN Tuning and Optimal Decision Forests problems.

One of the main challenges involved in this work was the definition of what consti-
tutes useful “mating-instincts” for optimization of the GA mating process. Thorough
research of the GA literature on the principles of mating in the GA, as well as a
thorough analysis of the genetic search process itself, revealed that the definition of
useful “mating-instincts” in the GA was problem-dependent: specimens in the GA
population should tend to mate with those that “complement” them on their own
abilities to optimize the objectives of the problem under investigation. It took time to
realize that “mating-instincts” defined using the above criteria should theoretically
promote the pairing of specimens having orthogonal (or independent) information,
which is reflected on their “complementary” behavior toward the optimization objec-
tives in question. For example, take a pair of specimens that represent two supervised
learning classifiers. If these classifiers tend to misclassify different examples in a test-
ing set, then they must have been built with somewhat orthogonal input parameters.
This is a deterministic cause-effect relationship reflected in the orthogonal classifica-
tion behavior of the classifiers. Hence, “mating-instincts” that are defined according

to-the-abovescriteriashave the potential to theoretically promote more diverse pairing
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of solutions in the GA and consequently more diverse sampling of the search space of
optimization problems during genetic search.

The second research involved the actual selection of testbed problems. The choice
of testbed problem was critical because it defined the “mating-instincts.” The chosen
testbed problems should be well-known optimization problems that have been thor-
oughly investigated, and thus well-understood, by the research community. They
should preferably also have real-world applicability, in order to inspire other re-
searchers dealing with complex, computational intensive optimization problems to
extend the proposed ideas and benefit in their own research. Furthermore, the chosen
testbed problems should have optimization objectives that translated into an intu-
itive definition of useful “mating-instincts”, in order to facilitate the implementation
and evaluation of the proposed “instinct-based” mating ideas. The chosen testbed
problems were the 1-NN Tuning problem detailed in Section 3.3 and the Optimal
Decision Forests problem detailed in Section 3.4.

Another challenge involved the implementation of new GAs to facilitate the eval-
uation of the proposed “instinct-based” mating strategies on the performance of ge-
netic search applied to the two chosen testbed problems. Recall that mating is only
one component of the genetic search process, thus, GAs had to be implemented to
solve the two chosen testbed problems. Moreover, these GAs had to be designed
to work well (i.e. discover good solutions) with the conventional mating strategy
for two reasons: 1) in order to generate a good set of baseline experimental results
using the convention mating strategy to be compared to those results attained with

“instinct-based” mating, and 2) to ensure that any improvement brought forth by
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“instinct-based” mating on the performance of the GA was a real improvement, and
not due to mere chance. To this end, the well-known RK-GA (Rozsypal and Kubat
2003) was re-implemented from the GA literature, and further improved upon, for use
as the baseline GA (hereinafter “RK-GA,") for all experiments with “instinct-based”
mating in Testbed Problem 1.

However, applying “instinct-based” mating to Testbed Problem 2 required the
design of a new GA, hereinafter TM-GA,. The main reason for this choice, instead
of simply picking an existing GA from the literature, was to extend the framework of
the original RK-GA which is applicable to single classifier optimization, to be also
applicable to the optimization of ensembles of classifiers. The main benefit of build-
ing a new GA by extending the original RK-GA’s framework stems from RK-GA’s
pioneering use of a variable-length, value-encoded specimen chromosome encoding
scheme. This chromosome-encoding scheme was found to significantly reduce the
GA’s computational costs when applied to large data sets. Thus, intuitively, given
that Testbed Problem 2 involves the simultaneous optimization of multiple decision
tree classifiers in an ensemble, the specimen chromosome-encoding scheme pioneered
by RK-GA was a prime design choice for use in a new GA capable of handling large
data sets efficiently.

There were further research challenges associated with the design of TM-GA,.
For example, in RK-GA a specimen represented a single 1-NN classifier. In TM-
G Ao, however, a specimen represents multiple decision tree classifiers (induced with
the C4.5 Decision Trees program) in an ensemble of variable size. Thus, the design

of TM-GAy’s recombination process posed two new challenges: 1) how to best pair
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the actual decision trees composing paired decision forests for recombination, and 2)
how to pair the newly generated decision trees into new decision forests. The design
choice for TM-GAy’s recombination process that tackled these challenge is detailed
in Section 4.5.1.

Another major challenge in the design of TM-GA, stemmed from the fact that
the C4.5 Decision Trees program tends to induce decision trees that over-fit their
training sets (Hall and Smith 1998; Ho 1998a). In this case, when the C4.5 Deci-
sion Trees classifier is optimized by a powerful optimization tool such as the GA,
the training set over-fitting potential can literally shoot-through-the-roof! The main
reason for the explosive over-fitting behavior is that the classification accuracy of the
GA-generated decision forests is generally measured on the training set itself during
genetic search as a term in the fitness-function. Hence, the GA can be easily bi-
ased toward favoring the highly over-fit decision trees and corresponding ensembles
that are discovered during genetic search. In the design of TM-GAy, this issue was
dealt with by introducing a novel ensemble diversity measure into T'M-GAg’s fitness-
function that prevented specimens (or decision forests) from being penalized for the
classification errors of its individual decision tree classifiers as long as those errors
did not impact the overall ensemble accuracy. Unfortunately, the existing ensemble
diversity measures described in the literature were not designed for use in the process
of building individual classifiers, but rather only on the process of grouping pre-built
classifiers into ensembles (Kuncheva 2003). The novel ensemble diversity measure was
dubbed the “triple-fault” measure because it measures the “complementary” classi-

fication behavior of every possible sub-ensemble of “3” decision trees from among all
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the decision trees making up a decision forest. The design of the novel “triplet-fault”
diversity measure is detailed in Section 4.5.1.

Similarly, the design of a fitness-function for TM-GAj also posed a very challenging
task because the fitness-function needed to include terms that reflected both (1)
ensemble-level optimization objectives as well as (2) decision trees-level optimization
objectives. The detailed explanation on how this challenge was tackled in TM-GA,
is presented in Section 4.5.1.

Yet another challenge encountered in the design of TM-GA, was the choice of
the stopping criteria, which determines when better solutions can no longer be dis-
covered by the genetic search. Choosing a stopping criteria is a common challenge
in the design of GAs (X. Yu 2010; Safe, Carballido, Ponzoni, and Brignole 2004).
For example, TM-GAy cannot determine when the optimal decision forest has been
discovered because it does not know when a forest is optimal enough. This issue is
further complicated by the fact that the genetic search can sometimes become trapped
in a solution corresponding to some local optimal in the fitness-function. While the
genetic search might remain trapped there indefinitely, it can sometimes escape to
better solutions after an arbitrary number of iterations. To tackle these challenge,
TM-GAy was allowed to run for an ample amount of iterations before it determined
that better solutions could not be discovered. The choice of stopping criteria for
TM-GA, is detailed in Section 4.5.1.

Finally, another challenge involved in the design of TM-GA, as well as in the
evaluation of the impact of “instinct-based” mating under Testbed Problem 2, was

the significant computational power required by TM-GA,. As discussed in
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Section 4.5.2, the computational time complexity of TM-GAg is dominated by the

decision tree induction process (i.e. the time required by the C4.5 Decision Trees
program to induce decision trees). On average, during each experiment with data
sets from the UCI Machine Learning Repository, TM-GA, generated approximately
300 decision trees and discovered 60 new decision forests per iteration of the GA.
Furthermore, TM-GAq runs lasted from some few hundred iterations for smaller UCI
data sets to as many as 10,000+ iterations for large and complex UCI data sets (i.e.
those having large number of examples, attributes, and classes). While TM-GA, was
implemented as a program that made use of parallelization to build multiple decision
trees simultaneously during the recombination process, the actual off-the-shelf imple-
mentation of the C4.5 Decision Trees program that was used to induce decision trees
was not internally parallelized to more efficiently induce decision trees. Parallelization
of the C4.5 Decision Trees program is a complex task because numeric attributes have
to be re-evaluated at different levels of the decision tree induction process, which hin-
ders parallelization. As a consequence, the speed of the tree induction process slowed
down significantly when large data sets were used. Moreover, the process of build-
ing multiple decision trees in parallel also requires significant amount of memory to
store the induced decision tree models. This requirement is inherent from the com-
putational storage cost of the decision tree induction process, a cost which increases
proportionally to the size of the training data set, as detailed in Section 4.5.2.

In conclusion, various challenges were encountered during the execution of this
research. These challenges attest to the thought-provoking nature of the novel work

presented here.
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1.3 Summary of Contributions

The work presented here is likely to produce new and useful insights for Machine
Learning practitioners engaged in applications of Genetic Algorithms. There is the
potential to benefit for researchers across various domains of science who rely on

genetic search for the optimization of problems in their own research fields.

1.3.1 Faster Genetic Search with Minimal Computational
Overhead

One major contribution of this work to the field of Machine Learning are the five (5)
proposed IM-GA “instinct-based” mating strategies, which replace the long-standing,
conventional mating strategy, which based on random selection of mating partners.
The IM-GA mating strategies are more sophisticated strategies designed to mitigate
the issue that is premature convergence of the GA to suboptimal solutions generated
by the conventional mating strategy. The major advantages of the IM-GA mating

strategies over the conventional mating strategy are:

1. The IM-GA mating strategies promote statistically significant increased con-
vergence speed of the GA when compared to the conventional mating strategy
when applied to two complex optimization problems from the domain of super-

vised classification;

2. The IM-GA mating strategies do not impact the quality of the GA-generated
solutions when compared to the conventional mating strategy. Instead, the

quality of the generated solutions are often improved, and;
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3. The IM-GA mating strategies require only minimal additional computational

overhead when used to optimize the GA mating process.

In real-world terms, this means that applications of the GA that replace
the conventional mating strategy in favor of the IM-GA mating strategies
in their genetic search process, should discover just as good or perhaps
even better solutions, but in significantly shorter periods of computational
time. This benefit is confirmed in this research from the application of the IM-GA
mating strategies in the complex, real-world problems of optimizing the 1-NN classi-
fier (Testbed Problem 1) and building optimal ensembles of decision trees (Testbed
Problem 2). The results presented in Chapter 5 confirmed that the IM-GA
mating strategies indeed accelerated the search speeds of both the base-
lines RK-GAy, and TM-GA, when compared to the conventional mating
strategy. Moreover, the increased search speed did not come at the cost
of the quality of the GA-generated solutions nor additional computational

overhead.

1.3.2 Improved Genetic Search In Various Optimization Prob-
lems

Another major contribution of this work to the field of Machine Learning is also
reflected as another major advantages of the proposed IM-GA mating strategies:
their applicability to numerous optimization problems in the domain of supervised
classification. This feature is due to IM-GA’s adoption of measures that are problem

domain dependent (as opposed to simply problem dependent) to implement “mating-

www.manaraa.com



22
instincts” in the GA mating process. The IM-GA mating strategies treat the classifier

being optimized in a problem as a “black-box.” Moreover, the “mating-instincts”
are implemented from measures relevant to the input parameters used to build the
classifiers (i.e. the example and attribute sets) and to the output (or response) of
the classifiers (i.e. the classification error on different testing examples). Hence, no
custom classifier dependent measures are required to improve genetic search through
the use of the IM-GA mating strategies. This feature was reflected in this work by the
simple application of the five proposed IM-GA mating strategies to the two chosen
testbed optimization problems from the domain of supervised classification. Because
of their adaptability, the applications of the proposed IM-GA mating strategies to

other problems in the domain of supervised classification are boundless.

1.3.3 A Novel GA-Based Approach To Building Decision
Forests

Another contribution of this work to the field of Machine Learning is the novel GA,
the TM-GA,, which was designed and implemented in this work to facilitate the ap-
plication of the proposed IM-GA mating strategies in Testbed problem 2; the Optimal
Decision Forests problem. As discussed in Chapter 5, the decision forests generated
by TM-GAy were as accurate or better, as well as significantly more compact, than
those generated by the state-of-the-art, non-GA, ensemble learning approaches of
Bagging, AdaBoost, and Random Forest when applied to UCI data sets. The exper-
imental results revealed that the decision forests generated by TM-GA, have three

main advantages over those generated by the non-GA approaches:
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1. Enhanced interpretability: TM-GAy’s decision forests are both accurate and

compact (i.e. optimal), making results much more easy to interpret when com-

pared to the large forests generated by the state-of-the-art, non GA approaches;

2. Low Memory Requirements: Due to their compactness, they consume signif-
icantly less memory than those generated by classical approaches. They can
be efficiently converted to a set of decision rules, stored in memory-constrained

micro-chips, and used in real-world applications, and;

3. Fast Classification Response: Also due to their compactness, their fast response
time (i.e. average number of tests required to classify an example) makes them
useful in real-world applications where real-time response is critical, and other-

wise large forests could not be practically used.

The optimal decision forests (i.e accurate and compact) generated by TM-GA,
are valuable tools for use in many real-world, real-time response demanding, memory

constrained applications.

1.3.4 Elimination of Manual Weight Tuning in the Original
RK-GA’s Fitness-Function

Another major contribution of this work is the modification made to the original
RK-GA’s fitness-function (see Equation 4.6 in Section 4.4.1) to eliminate the effort
of manual tuning of weight parameter. In the original RK-GA, the three weight
parameters ¢y, ¢o, and c3 were set to 1 to provide the same level of significance to all the
terms. This was done due to limited knowledge about the sensitivity of the GA to the

different terms of the fitness-function. However, this is not always desirable because
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the different terms of RK-GA’s fitness-function correspond to different optimization
objectives having diverse search space sizes. To eliminate this objection, the fitness-
function of the original RK-GA was modified in a manner that the weight parameters
are set automatically using measures that are data set relevant (see Section 4.4.2).
The proposed approach eliminated the effort involved in manually tuning the weight
parameters. Furthermore, the new automatically-set weight parameter values were
found to actually improve the performance of RK-GA. The new RK-GA, with the
modifications to the weight parameters, was dubbed the baseline RK-GA, and used
in all experiments performed in this work with Testbed Problem 1, the 1-NN Tuning

problem.
1.4 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 introduces the problem statement
followed by a brief overview of the two complex optimization problems from the
domain of supervised classification that were chosen as testbeds for the evaluation of
proposed ideas. Moreover, the performance criteria applied to the two chosen testbed
problems are also reviewed. Chapter 3 surveys existing literature on the application
of both GA-based and non-GA-based, state-of-the-art approaches to solving the two
chosen testbed problems. Chapter 4 describes the five (5) proposed IM-GA mating
strategies as well as the GAs that were designed to facilitate the application of IM-
GA in the two chosen testbed problems, namely, the baselines RK-GAg and TM-GA,.

Chapter 5 discusses the extensive experiments that were performed to evaluate the
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proposed ideas and presents the experimental results. The conclusion and ideas for

future research on “instinct-based” mating is presented in Chapter 6.
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CHAPTER 2

Improving the Genetic Algorithm

This chapter describes the research problem addressed by this work, the two testbed
problems chosen to evaluate the five (5) proposed IM-GA mating strategies, and the

performance criteria used.
2.1 Problem Statement

Whether the genetic search can be expedited, with the quality of the so-
lutions improved, and with minimal additional computational overhead
required, by more sophisticated mating strategies.

While the long-standing, conventional mating strategy is based on random selec-
tion, the mating strategies proposed in this work are based on the Darwinian principle
of “opposites-attract” commonly found in nature. In the conventional mating strat-
egy, specimens have no mating choice. In the mating strategies proposed in this work,
specimens are “endowed” with “mating instincts” that guide them in their selection
of mating partners that “complement” them according to some problem dependent

optimization criteria.

26
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The importance of this work lies on the fact that the impact of the mating strategy

on the performance of the GA has been neglected in the rich GA literature. This
work shows that more can done to optimize genetic search through improved mating

strategies that require negligible additional computation overheard.

2.2 Two Testbed Problems

A testbed problem is used to evaluate an idea. In this case, identifying testbeds
is important because the choice of the testbed determines the design of “mating-
instincts” for the proposed IM-GA mating strategies. Recall from the discussion
in the Introduction that the “mating instincts” proposed in this work are defined
according to the unique optimization criteria of a particular problem.

As was discussed in the Introduction, the domain of supervised classification offers
numerous optimization problems under which useful “mating-instincts” can be very
intuitively defined (see Section 4.1.1 for a more detailed elaboration). In this work,
two testbed problems were adopted from the domain of supervised classification to
evaluate the performance of the proposed IM-GA mating strategies. The chosen

testbed problems are:

1. Testbed Problem 1: The 1-NN Tuning problem, and;

2. Testbed Problem 2: The Optimal Decision Forests problem.

Both Testbed Problems 1 and 2 are complex optimization problems (NP-hard
and NP-complete, respectively), for which no algorithms have yet been developed to

directly or “quickly” (i.e. in polynomial order of computational time complexity) find
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optimal solutions (Quirino and Kubat 2010; Chandra and Yao ; Okun, Valentini, and

Re 2011). Finding “good” solutions to these problems is currently a task for heuristic
approaches such as the GA. Hence, improving the application of the GA in these
problems, as well as designing new and better GAs to solve them (as is accomplished
in this work through the design of the novel TM-GA, for Testbed Problem 2) are
both useful contributions to the field of Machine Learning. Testbed Problems 1 and

2 are described in the next section.

2.2.1 The 1-NN Tuning Problem (Testbed Problem 1)

The first testbed optimization problem chosen from the domain of supervised clas-
sification is the 1-NN Tuning problem, which is more thoroughly elaborated in Sec-
tion 3.3. The 1-NN Tuning problem consists of the search for optimal subsets of
examples and attributes from a data set that optimize the classification accuracy
of the 1-NN classifier, while minimizing its classification costs (Rozsypal and Kubat
2003).

The 1-NN Tuning problem is an NP-hard problem that has been thoroughly inves-
tigated by the research community. Numerous heuristic approaches have been devel-
oped over the years to discover good solutions to the 1-NN Tuning Problem. These de-
veloped approaches consisted of both GA-based and non-GA-based approaches (Hart
1968; Wilson 1972; E. Cantu-Paz 2004; Ishibuchi and Nakashima 2000; Rozsypal and
Kubat 2003; Kuncheva and Jain 1999; Quirino and Kubat 2010). The GA-based
approaches seemed to have an advantage over the non-GA-based approaches because

theyswerercapablerofisimultaneously optimizing both the example and attribute sets
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of a data set. In contrast, non-GA-based approaches attempted to optimize the exam-
ple and attribute sets sequentially (Quirino and Kubat 2010). An overview of various
GA-based and non-GA-based approaches to the 1-NN Tuning problem is given in
Sections 3.3.1 and 3.3.2.

In order to apply the proposed IM-GA “instinct-based” mating strategies to the
optimization of Testbed Problem 1, the well-known GA called the “RK-GA” (Rozsy-
pal and Kubat 2003) was re-implemented from the literature and further improved.
RK-GA pioneered in the use of a value-encoded, variable-length specimen chromo-
some representation that significantly reduced the computational costs associated
with the optimization of large data sets. Moreover, RK-GA compared favorably to
other well-known approaches to the 1-NN Tuning problem. As a result, RK-GA is
a good baseline GA onto which to implement the proposed IM-GA “instinct-based”
mating strategies and evaluate their impact on genetic search applied to Testbed
Problem 1. The new RK-GA, with the improvements developed in this work, is

hereinafter referred to as the baseline RK-GA,.

2.2.2 Optimal Decision Forest Problem (Testbed Problem 2)

The second testbed optimization problem chosen from the domain of supervised classi-
fication is the Optimal Decision Forests problem, which is more thoroughly elaborated
in Section 3.4. The Optimal Decision Forest problem consists of the search for opti-
mal decision trees (i.e. both highly-accurate and compact decision trees) that when
combined into an ensemble (or decision forest) are capable of “complementing” each

others’elassificationserrors in order to maximize the ensemble classification accuracy
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while also minimizing the overall ensemble classification costs (i.e. minimizing the
number of tests required to classify unknown examples) (Chandra and Yao ).

Finding optimal decision forests requires the simultaneous optimization of multiple
objectives: 1) optimizing the example and attribute sets used to induce decision
trees (i.e. maximize classification accuracy and minimize the size of the decision
trees), and 2) optimizing the grouping of the decision trees into ensembles to attain
higher predictive power than any individual decision tree in the ensemble. These
optimization tasks make up an NP-complete problem (Hyafil and Rivest 1976; Murthy
and Salzberg 1995; Chandra and Yao ; Chikalov 2011).

Building optimal ensembles of classifiers is a popular research topic in Machine
Learning because classifier ensembles have been found both empirically and theoret-
ically to outperform single classifiers. According to Thomas Dietterich, a pioneer in
ensemble learning research, classifier ensemble learning is a major research direction
in Machine Learning (Dietterich 1997). Over the years, both GA-based and non-GA-
based approaches have been developed to search for optimal decision forests (Oza
and Tumer 2008; Rokach 2010). An overview of representative approaches is given in
Sections 3.4.3 and 3.4.4.

In order to apply the proposed IM-GA “instinct-based” mating strategies to the
optimization of Testbed Problem 2, a novel GA called the “baseline TM-GA,” was
implemented specifically for the needs of this research. TM-GA, extends the original
RK-GA’s single classifier optimization framework, which relies on the conventional
mating strategy, into a framework for the optimization of variable sized ensembles

of classifiers. The results of rigorous experiments comparing TM-GAy’s performance
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to those of state-of-the-art, non-GA-based ensemble learning approaches of Bagging,
AdaBoost, and Random Forest are given in Chapter 5. The results show that TM-GA,
compared favorably to these state-of-the-art approaches under various performance
criteria. As a result, TM-GA, is a good baseline GA onto which to implement the
proposed IM-GA “instinct-based” mating strategies and evaluate their impact on

genetic search applied to Testbed Problem 2.

2.3 Performance Criteria

This section describes the different criteria that were used to evaluate the performance
of the GA with and without the application of the IM-GA “instinct-based” mating
strategies. The performance of the GA is measured both by its search speed (defined
in the subsequent section) as well as by the quality of its final generated solutions:
the 1-NN classifier in Testbed Problem 1 and the decision forest (ensemble of C4.5
Decision Trees) classifier in Testbed Problem 2. The chosen performance criteria have
been commonly used throughout the GA literature (Quirino and Kubat 2010; Lim
and Shih 2000; Alkhalid, Chikalov, and Moshkov 2011; Murthy and Salzberg 1995).

Most of the performance criteria used to evaluate the GA under Testbed Problems

1 and 2 are common. These common criteria include:

e Common Criterium 1: The classification accuracy of the GA-generated classi-

fiers, and;

e Common Criterium 2: The “attribute set reduction” ability of the GA (i.e. the

ability to remove of noisy/irrelevant attributes from a data set).

www.manaraa.com



32

Other criteria were also adopted to measures the complexity of the GA-generated
classifiers in Testbed Problems 1 and 2. Measuring classifier model complexity is cor-
related to measuring classification costs, which is a classifier dependent task. That is
because different classifiers have different internal models (i.e. a decision tree classifier
is represented by test nodes or decision rules while a 1-NN classifier is represented by
the raw examples in its training data set).

To measure the complexity of the GA-generated 1-NN classifiers in Testbed prob-
lem 1, the “example set reduction” ability of the GA (i.e. removal of noisy/redundant
examples from a data set) was used. In addition, the Common Criterium 2 listed
above, the “attribute set reduction” ability of the GA, was also used as a measure
of the complexity of the 1-NN classifier. Both of these measures are relevant to the
complexity of the 1-NN classifier because the classification costs of the 1-NN classifier
increase proportionally with respect to the number of examples and attributes in the
training data set (Quirino and Kubat 2010). The complexity of a decision forests was
measured by summing-up the measures from the individual decision trees making up
the decision forest.

The performances of the baselines RK-GAy and TM-GAg (using the conventional
mating strategy) according to the criteria above were compared to those of existing
state-of-the-art approaches for the generation of 1-NN classifier and decision forests,
respectively. This was done to ensure that both RK-GAqg and TM-GAq are not weak
GAs that could be easily improved by the application of the five proposed IM-GA

“instinct-based” mating strategies.

www.manaraa.com



33

To evaluate the impact of the five IM-GA “instinct-based” mating strategies on
the performances of RK-GAj (in Testbed Problem 1) and TM-GAq (in Testbed Prob-
lem 2), experiments with RK-GAy and TM-GA, were first performed using the con-
ventional mating strategy and the results were collected. Then, the IM-GA mating
strategies were introduced into both RK-GAy and TM-GAg and the experiments were
rerun. The two sets of experimental results were then compared using the chosen per-
formance criteria described in the following sections.

Finally, note that all experiments were performed using various benchmark data
sets from acquired from the UCI Machine Learning Repository. For all techniques
used in this work, both GA-based and non-GA-based, the experiments with each UCI
data set were run as 5-fold cross-validation, repeated 10 times for different seeds of
the random number generator. This corresponds to a total of 50 experiments per UCI
data set per technique used in this work. The statistical significance of the differences
in performances among the various techniques was assessed by the paired t-test with

5% confidence level.

2.3.1 Genetic Search Speed

The genetic search speed (or convergence speed) is the most important performance
criteria used to evaluate the impact of the proposed IM-GA “instinct-based” mating
strategies on the performances both baselines RK-GAy and TM-GAy. The genetic
search speed is used to determine whether or not the IM-GA “instinct-based” mating
indeed lead the GA to faster convergence: the ability to discover good solution in a

minimumnumbersofigencrations (or iterations). In the experiments with each UCI
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data set, convergence speed was defined as the time required for the average specimen
accuracy”® of each GA to reach a certain convergence target.

Understanding that the number of generations is inappropriate for measuring
time (e.g. larger populations need fewer generations), and that CPU-time is highly
dependent both on the available computing power as well as the programmer’s skills,
time was measured instead by the number of fitness-function evaluations. Time
ranged from t=0, at the start of the GA run, to t=total fitness evaluations at the
convergence target. This measure of time was used in a previous work, and it avoids
biases (Quirino and Kubat 2010).

Additionally, the convergence target was set differently for RK-GAg and TM-GA,,
since each deal with a unique classifier having different susceptibility to over-fitting.
For RK-GAy, the convergence target was set as the value corresponding to the accu-
racy of the 1-NN classifier (averaged values obtained from multiple cross-validation
runs and presented in Table 5.6). However, for TM-GAy, the convergence target was
set as the value corresponding to the 95,-percentile (or 95%) of the accuracy of the
C4.5 Decision Trees program (averaged values obtained from multiple cross-validation
runs and presented in Table 5.17). The convergence targets of RK-GAy and TM-GAy
differ because TM-GAq seeks to optimize the C4.5 Decision Trees program, which
tends to induce decision trees that very easily over-fit their training sets. In contrast,
the 1-NN classifier optimized by RK-GA, is less prone to over-fitting. Hence, the

convergence target for TM-GAy was chosen to prevent it from undershooting the val-

"Contrast the top-fitness specimen’s accuracy, which is more random.
8The average specimen accuracy is measured as the average classification accuracy of the classi-
fiers represented by the GA population
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ues given in Table 5.17 since it avoids over-fitting the decision trees induced by the

(C4.5 Decision Trees program during genetic search.

Average Convergence Comparison for RK-GA With and Without Instinctive Mating*
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Figure 2.1: Convergence speed of the baseline RK-GAy with and without the IM-GA
strategies in the UCI bupa data set.

To demonstrate how the GA convergence typically accelerated with the use of
the IM-GA mating strategies, Figure 2.1 shows how the average specimen accuracy
improved over time (measured by the total number of fitness-function evaluations) for
the baseline RK-GA,°® and three selected IM-GA mating strategies on the UCI data

set “bupa” (all five proposed IM-GA mating strategies are discussed in Chapter 4,

9The baseline RK-GAq is an improved version of the original RK-GA that was implemented in
this work. Just as the original RK-GA, the baseline RK-GAq also relies on the conventional mating
strategy to solve Testbed Problem 1.
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Average Convergence Comparison for MT-GA With and Without Instinctive Mating*

mmm TM-GA with Conventional Mating Strategy
- = = TM-GA with IM-GA Strategy 2, IM-D-H
—— TM-GA with IM-GA Strategy 4, IM-D-CMW
—+— TM-GA with IM-GA Strategy 5, IM-MP

-]
o

=y
w
T
|

=J
w
I
|

77

76

75

74

73

Average Classification Accuracy (%)

=~
[~

m

*Using Car Data Set

70 | 1 |
500 1000 1500 2000 2500 3000

Total Subjects Evaluated (as measure of time)

Figure 2.2: Convergence speed of the baseline TM-GA, with and without the IM-GA
strategies in the UCI car data set.

and these results are simple illustrations). The plot presents results averaged over
repeated cross-validation runs. Notice that in the IM-GA strategies, the average
accuracy of the induced 1-NN classifiers grew faster than in the baseline RK-GA,.
Similarly, Figure 2.2 shows how the baseline TM-GAy’s convergence typically
accelerated with the use IM-GA mating strategies (the same three strategies illus-
trated in Figure 2.1) on the UCI data set “car.” The plot presents results averaged
over repeated cross-validation runs. Notice that in the IM-GA strategies, the average
accuracy of the induced decision forests (whose decision trees were induced by the

gram) grew faster than in the baseline TM-GAy.
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2.3.2 Classification Accuracy
In the Machine Learning literature, the classification accuracy is the main criteria
used to evaluate the performance of supervised learning classifiers. The classifica-
tion accuracy of a classifier is formally measured as the percentage of examples in a
separate testing data set'® that are correctly “labeled” by a classifier. Additionally,
the classification accuracy is the primary optimization objective in the definition of
Testbed Problems 1 and 2. Hence, both baselines RK-GAg and TM-GAy contain
classification accuracy terms in their respective fitness-functions. During the genetic
search, the classification accuracies of the classifiers discovered by both RK-GA, and

TM-GA, are measured through evaluation on the training data set examples.

2.3.3 Data Set Reduction

This section describes a performance criteria used to measure how well the GA is
able to recognize and discard noisy examples (i.e. having wrong class labels), re-
dundant examples (i.e. promoting increased training and classification costs), and
noisy /irrelevant attributes from a data set in order to build better classifiers. The
ability of the GA to recognize and discard noisy/redundant examples in data set is
referred to as the “example set reduction” ability. The ability of the GA to recognize
and discard the noisy/irrelevant attributes in a data set is referred to as “attribute
set reduction” ability.

In Machine Learning, data quality is known to impact the quality of the classifiers

built. Removal of harmful examples and attributes from the training data set prior

Opptestingrdatarsetiusually refers to a separate set of data that was not used to train a classifier.
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to building a classifier is an absolute requirement for the simultaneous optimization
of classification accuracy and classifier model complexity (i.e. size or memory foot-
print) (Zhu, Wu, and Chen 2003; Dietterich 1995). Hence, this work evaluates the
ability of the GA to optimize both the example and attribute sets used to build a

classifier by discarding noisy/redundant examples and noisy /irrelevant attributes.

Attribute Set Reduction In Testbed Problems 1 and 2

To evaluate the “attribute set reduction” ability, two steps were taken following the
examples from (Rozsypal and Kubat 2003; Quirino and Kubat 2010). First, irrelevant
(or artificial) attributes were introduced into the UCI data sets used for experimen-
tation. This was done because UCI data sets are known to have been designed by
experts and consequently have mostly relevant attributes. Those attributes origi-
nally present in the UCI data sets are referred to as “original attributes”, and those
irrelevant attributes that were manually introduced are referred to as “artificial at-
tributes”. Second, two measures were used to capture the “attribute set reduction”

ability of the GA. The two measure are as follows:

e Measure 1: The percentage of “original” attributes retained by each of the

GA-generated classifiers, and;

e Measure 2: The percentage of “artificial” (irrelevant) attributes retained by

each the GA-generated classifiers.

Notice that both Measures 1 and 2 capture the ability of the GA to discover clas-

sifiers with compact models (i.e. using less attributes). However, more importantly,
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Measure 2 clearly captures the ability of the GA to discard the irrelevant attributes

in a data set.

Example Set Reduction in Testbed Problem 1 Only

The size of the example set used to train a classifier is a measure of classifier complex-
ity that is more relevant when applied to the 1-NN classifier (investigated in Testbed
Problem 1) than to the decision tree classifier (investigated in Testbed Problem 2).
That is because the number of examples in a training data set directly impacts the
classification costs of the 1-NN classifier. Indeed, the ability of the GA to remove
noisy /redundant examples from a data set is an important optimization objective for
both Testbed Problems 1 and 2. However, in terms of measuring classifier model
complexity, the complexity of a decision tree classifier is better captured by criteria
such as the total number of nodes, the total number of leaves, and the average number
tests required to classify an example. Hence, the “example set reduction” ability of
the GA is used as a performance criteria for Testbed Problem 1 only. Criteria that
are more relevant for measuring the complexity of decision tree model are presented
in the next section.

The “example set reduction” ability of the GA was evaluated in Testbed Problem
1 by measuring the percentage of examples retained by each of the GA-generated

1-NN classifiers.

2.3.4 Classification Costs Reduction In Testbed Problem 2

This section describes the performance criteria chosen to evaluate the complexity

(or size) of the GA-gencrated decision forests in Testbed Problem 2. The criteria
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discussed here have been commonly used in the literature as measures of classifi-
cation costs for decision trees and, thus, can be analogously extended to decision
forests (Murthy and Salzberg 1995; Lim and Shih 2000; Alkhalid, Chikalov, and
Moshkov 2011).

In addition to the common “attribute set reduction” criterium described in the
previous section, which is a suitable measure of decision forest complexity, four ad-
ditional measures were adopted to further capture the different aspects of the model
complexity of decision forests. These four measures are cumulative measures com-
puted by summing-up the measures for the individual decision trees in a decision
forest. For example, given a decision forest, the following four measures were com-

puted:

e Measure 1: The number of trees making up the decision forest (or ensemble

size);

e Measure 2: The total sum of the number of nodes in all decision trees making

up the decision forest;

e Measure 3: The total sum of the number of leaves (or decision rules) in all

decision trees making up the decision forest, and;

e Measure 4: The total sum of the average number of tests required to classify an
example by each decision tree making up the decision forest. Each decision tree
in a decision forest may require a different average number of tests to classify an

These average number of tests were added up for all trees.
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Notice how Measures 1, 2, and 3 combined reflect the computational storage cost
of a decision forest (i.e. the amount of memory needed to store the decision tree
models). In addition, Measures 1, 3, and 4 combined reflect the computational time

cost associated with the classification of an unknown example by a decision forest.
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CHAPTER 3

Literature Review

This chapter reviews principles from the field of Artificial Intelligence (AI) that are
relevant to this work. In particular, this work builds upon ideas from two main
sub-fields of AI: (1) Genetic Algorithms (GA) from the AI sub-field of Evolution-
ary Computation and (2) Supervised classification from the Al sub-field of Machine
Learning. Both of these sub-fields have have been thoroughly investigated in the
rich and vast Machine Learning literature. Research works related to the GA have
sought to both improve genetic search as well as apply it to numerous search and
optimization problems across various domains of sciences. Similarly, works related to
the domain of supervised classification have sought to create more accurate, compact,
interpretable, and generalized techniques capable of extracting relevant information
patterns from imperfect sets of labeled examples. Some researchers have also investi-
gated the conjoint applications of these two sub-fields by making use of the natural
connection between learning and search. For example, the problem of inducing the
most accurate and compact version of a given supervised classifier can be theoreti-

cally solved by searching through countless possible configurations of such classifier

42
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for the optimal one. Thus, learning and search can be viewed as complementary Al
research topics.

The review begins with an introduction to supervised classification, which is con-
sidered one of the most important tasks in the field of Machine Learning. Moreover,
a key issue in supervised classification is discussed: the impact of data quality on
the performance of supervised classifiers. In this work, this key issue was addressed
through the design and implementation of GAs capable of discovering optimal sub-
sets of example and attributes from data sets with the goal of inducing more accurate
and compact classifiers. Next, an introduction to the GA is given that provides an
overview of various principles constituents of genetic search. Finally, a survey is pre-
sented on previous works related to the application of the GA to the two chosen
testbed problems from the domain of supervised classification: 1) the 1-NN Tuning

problem, and 2) the Optimal Decision Forests problem.

3.1 Machine Learning - Learning Relevant Pat-
terns From Imperfect Data

Machine learning is a central research topic in the field of Artificial Intelligence (Al),
a branch of computer science concerned with creating systems that mimic human in-
telligence. Under AI, Machine Learning is the scientific discipline concerned with the
development of techniques that allow computers to use example data (i.e. observa-
tions) to solve problems (Alpaydin 2004). This concept of solving problems based on
past experiences (i.e. observations) is founded on the universal principle of inductive

inference: the ability t6 infer general rules about the nature of statistical processes
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from imperfect observed data in order to make predictions on future data (Angluin
and Smith 1983).

One of the main reasons why the study of Machine Learning is important to the
engineering sciences is because various engineering problems can only be adequately

defined through examples!!.

In numerous engineering problems, the response of a
system (i.e. its output value) to predetermined input values is known. However,
the internal function of the system itself, which describes the concise relationship
between the input and the output values, is unknown. Moreover, in many problems,
the amount of data available to define the input and output values is very large,
making it very difficult for a human to generalize a concise relationship between the
input and response of a system (Nilsson 1998). This issue is further aggravated by
the presence of noise in the observed data, which can mislead the interpretation of
intrinsic relationships between input and output values by a human. For example,
the UCI sonar data set described in Table 5.1 is a classical example of a complex
supervised classification problem that can only be adequately described by examples
(i.e. observations). The goal of this problem is to determine whether a detected

cylindrical object is either a “rock” or a “metal” based on the energy in the frequency

spectrum of reflected sonar signals (Gorman and Sejnowski 1988). The examples in

1 An example represents some observation about the input and response of a system. An example
is described by a pair of (1) a set of real, boolean (“0” or “1”), or categorical-valued (i.e. discrete
and finite values) attributes representing the input to a system and (2) either a label that categorizes
the example into a group (i.e. category or class) or a real value representing the observed response
of a system. Moreover, when examples carry labels, the process of inferring a function that maps the
attribute values to the labels is known as a classification problem. In contrast, when the examples
carry a real value instead of a label to represent the response of a system, the process of inferring a
function that maps the attribute values to the real value is known as a regression problem. Moreover,
in some Machine Learning applications, examples can belong to multiple groups and, thus, have
multiple class labels.
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the sonar data set describe a complex relationship between the properties of the sonar
signal emitter (i.e. the angle, aperture, and power of the emitted sonar signals),
the material properties of the cylindrical objects, and the energy spectrum of the
reflected sonar signals. The goal of Machine Learning is to develop algorithms that
allow computers to automatically decipher such complex relationships and represent
them as functions that accurately map sets of input values to their corresponding
observed output values.

In Machine Learning problems where the response of the system under investi-
gation is a categorical value (i.e. taking on discrete and finite values)'?, supervised
classification is the Machine Learning task of deciphering the complex relationships
between the attribute values of a set of examples (representing the input values to a
system) and the observed labels of the examples (representing the system’s response
to a given input) with the goal of making intelligent predictions on the categories

of future unlabeled examples. Supervised classification, and its inherent issues, is

described in detail in the following section.

3.1.1 Supervised Classification - Learning How to Discrimi-
nate From Examples

Classification is, in essence, the task of predicting the group membership (i.e. class) of
objects. It is a process which occurs naturally and continually in our everyday lives.
For example, classification takes place when recognizing familiar faces (e.g. John
versus Mary) or different objects on a desk (e.g. pencil versus pen), when discrim-

inating between the road and a pedestrian while driving, when learning new routes

2Contrast systems whose response are real values.
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to or from work in order to avoid known heavy traffic patterns, or when predicting
a friend’s reaction to a re-occurring circumstance. In general, classification involves
the processes of learning from examples (or past experiences), and consequently also
predicting the outcome of different situations.

When applied to computer related applications, the objects are simply represented
by data examples. Supervised classification predicts the class (or label) of unknown
examples (i.e. those without labels) by comparing their observed properties (i.e.
attribute values) to those of known examples (i.e. those with labels). In essence,
supervised classification is the Machine Learning task of inferring a function that
accurately maps the attribute values of known examples to their corresponding la-
bels with the goal of making intelligent predictions on the class of future unknown
examples.

Algorithms designed to infer a function for a given classification problem are called
supervised classifiers (hereinafter “classifier”). The process of building a classifier is
referred to as “training a classifier”, an alias that reflects the fact that the learning
processes of many existing classifiers require multiple passes through the training data
set in order to adequately “train” the classifier to recognize meaningful information
patterns in a training data set. The performance of classifiers is generally evaluated
on the basis of their classification accuracy on unknown examples (also referred to as
its generalization ability™®) as well as their classification costs'®, both of which vary

greatly among different existing classifiers.

13The generalization ability of a classifier is the ability to correctly assign class labels to unknown
examples which were not used to train the classifier’s model.

M The classification costs of a classifier are related to the computational time and storage costs
associated with assigning a label to an unknown example.
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The performance of classifiers is affected by many issues. For example, when clas-
sifiers are trained on large data sets, their training processes can require very high
computational costs of time and storage (Fuller, Groom, and Jones 1994). Addi-
tionally, large training sets generally lead to large classifier models, which in turn
leads to high classification costs. Another key issue in supervised classification is the
impact of data quality on the performance of classifiers. Real-world data sets have
noise, which misleads classifiers into creating models that are more complex than
required to represent the underlying relationship between the training examples and
their class labels (Dietterich 1995). This issue is known as classifier over-fitting and
it is discussed in more detail in the next section.

The Machine Learning literature reveals that numerous classifiers have been devel-
oped over the past decades. Some well-known and widely employed classifiers are the
C4.5 Decision Trees program developed by Quinlan (1993), Neural networks (Haykin
1999), Support Vector Machines (Cristianini and Taylor 2000), and the k-NN clas-
sifier (Quirino and Kubat 2010), all for which software implementations are freely
available through software packages such as the Weka Data Mining Software Pack-
age (Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten 2009)*>. A more recent
strategy is the adoption of ensembles of classifiers, which are classification systems
that combine the output of multiple (heterogeneous or homogeneous) classifiers to

achieve higher predictive power. The concept of classifier ensembles is described in

5Weka is an open-source, Java-based API for the development of Machine Learning and Data
Mining tools
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more detail in Section 3.4, where the Optimal Decision Forests problem (Testbed
Problem 2) is discussed.

The demand for improved supervised classifiers is always high. Numerous real-
world applications such as face recognition, video surveillance, natural language pro-
cessing, and online search engines, have all led to an increasing demand for more
accurate and compact (i.e. having lower classification costs and faster response time)
classifiers. This work addresses this real-world demand through the design and im-
plementation of GAs that are capable of optimizing both the accuracy and size of

popular classifiers described in the Machine Learning literature.

3.1.2 The Impact of Data Noise in Supervised Classification

In supervised classification, data set quality has a major impact on the quality of
the classifiers that are built. Unfortunately, the quality of real-world data sets is fre-
quently damaged by noise from various sources. This makes the removal of noise from
data sets a practical Machine Learning task. The main motivation for removing noise
from data sets prior to inducing classifier models is to achieve higher classification
accuracy. Zhu et al. (2003) claims that classification accuracy cannot be optimized
unless the data set is “cleansed” of noise prior to building a classifier’s model. This
claim has been supported by various works in the GA literature which have shown
that the simultaneous removal of harmful examples and attributes from data sets can
indeed lead to the optimization of both the accuracy and size (i.e. classification costs)

of existing classifiers (Rozsypal and Kubat 2003; Quirino and Kubat 2010; Ishibuchi
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and Nakashima 2000; Kuncheva and Jain 1999; Soryani and Rafat 2006; Hart 1968;

Gates 1972; Tomek 1976).

Data noise emerges from sources such as machine error (i.e. sensor errors during
automatic data collection), as well as from human data entry errors (i.e. entering the
wrong class label for an example). Moreover, data noise affects both the attribute
values describing the examples of a data sets (hereinafter attribute noise), as well
as the labels that categorize the examples into different classes (hereinafter example
noise). Classifiers trained with noisy data sets tend to create overly complex models
that capture not only the relevant underlying patterns in their training data sets, but
also the irrelevant ones. This issue is known as over-fitting (Dietterich 1995). Over-
fitting renders classifiers unable to correctly recognize the category labels of unknown
examples (i.e. those examples without labels and which have unique combinations
of attribute values that were not present in the original training data set). In the
Machine Learning literature, data noise is referred to as one of the major causes of
over-fitting in the task supervised classification (Tan, Steinbach, and Kumar 2005).

Certain classes of classifiers are more prone to over-fitting due to data noise than
others. In Machine Learning, the likelihood of a classifier to build a model that
over-fits a training data set is measured in terms of the classifier’s bias and variance
statistics. The sum of the bias and variance make up the mean squared error (MSE) of
a classifier, or its expected error, computed over all possible training data sets sampled
from an unknown distribution that a given classifier attempts to estimate (Oza and
Tumer 2008; Rokach 2010). The noise resulting from sampling data examples from

an unknown distribution (i.e. corresponding to sensor errors in the real-world) also
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contributes to a classifier’s expected error. However, data noise is generally ignored in
computations of classifier MSE because estimating sampled data noise can be difficult,
unless sufficiently repeated data samples are available to estimate the variance in the
labels of repeated samples. The bias measures the difference between (1) the true
function that generated the possible training data sets and (2) the “average” function
estimated by a classifier over all possible training data sets. In other words, the bias
describes the average error of a classifier and it indicates the ability of a classifier
to adequately fit its training data set. The bias can reveal systematic errors in a
classifier. The variance describes how much the function estimated by a classifier
varies from its “average” function over all possible training data sets (i.e. the spread
of the estimated functions). That is, the variance is an indicator of how much the
structure of a classifier’s model varies from one training data set to another. A
good classifier should have both low bias and low variance in order to achieve good
performance. That is, the classifier should on average be correct (i.e. low bias) while
the structure of its model should remain stable from one training set to another (i.e.
low variance). In practice, however, there is a trade-off between bias and variance in
classifiers. For example, a classifier that adequately fits a training data set (i.e. low
bias) also requires flexibility to fit the training data set (i.e. high variance).

Figure 3.1 illustrates the decomposition of the MSE of a classifier into bias,
variance, and noise. For simplicity of illustration, this example uses a true function
that outputs numerical values instead of class labels (a similar analysis applies for
class labels). The top-left plot of Figure 3.1 shows the true function (solid line) along

with 30 estimated fits. Each of the 30 estimated fits were produced by sampling sets

www.manaraa.com



51

of 10 examples (with simulated sampling noise) from the true function and fitting the
sampled example set to a 5,,-degree polynomial (hereinafter “polynomial estimator”).
Thus, each of the 30 sampled sets correspond to a different training set having 10
examples. The simulated sampling noise is illustrated in the bottom-right plot of
Figure 3.1; notice how the vertical coordinate value of sampled examples (e.g. the
plus-signs) vary above and below the true function (in the real-world, this variability
is caused by sensor errors). The top-right plot of Figure 3.1 gives the true function
and the “average” function estimated from the 30 estimated fits shown on the top-left
plot. The regions where the true function and the “average” estimated function differ
significantly correspond to regions of high bias (i.e. systematic prediction errors) by
the polynomial estimator; overall, the polynomial estimator exhibit a low bias. The
bottom-left plot of Figure 3.1 gives the the 30 estimated fits and their corresponding
“average” function. The spread of the 30 estimated fits around the “average” function
estimates the variance of the polynomial classifier. Notice how the 30 estimated fits
vary significantly around their average, which indicates that the polynomial estimator
has a high variance. Figure 3.1 gives a clear illustration of the bias/variance trade-
off that is common to classifiers; in this example, the polynomial estimator exhibits
low-bias/high-variance behavior.

Classifiers exhibiting high variance are generally more prone to over-fitting the
noise present in data sets than those with low variance. For example, the C4.5
Decision Trees (Quinlan 1993) program (hereinafter “C4.5”), which is used extensively
in this work as a decision tree builder (see Section 2.2 for a detailed description of

C4.5) is known|to be a low-bias/high-variance classifier. C4.5 easily over-fits its
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True function (solid) plus 30 estimated fits (dashed) with 10 examples each. Bias: True function (solid) minus average of 30 estimated fits (dashed).
T T T T T T T T T T
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Variance: Spread of 30 estimated fits (dashed) around their average (solid). Noise: True function (solid) versus noisy samples (plus-sign).
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Figure 3.1: Decomposing the Mean Squared Error (MSE) of a classifier into bias,
variance, and data sampling noise. In this example, the estimator is a 5;,-degree
polynomial fitting 30 randomly sampled training sets, each with 10 examples.

induced decision tree models to noise found in data sets (Hall and Smith 1998; Ho
1998a). In C4.5, over-fitting due to data noise is directly manifested in the structure
of the induced decision trees as noisy /irrelevant test patterns that are built into the
model simply to fit the noise in the training data set.

The issue of classifier over-fitting is further aggravated by the presence of irrelevant
attributes in data sets. Irrelevant attributes are those that contribute to increased
data set dimensionality without the addition of meaningful patterns (or information)

to'a data set."Asaresult from the presence of irrelevant attributes in data sets, Ma-
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chine Learning problems become more difficult and more computationally expensive
to solve. For example, as the results in Section 5.2 will demonstrate, irrelevant at-
tributes are often retained in the decision tree models induced by C4.5, consequently
harming the classification accuracy of the induced decision trees. Similarly, in the
case of the 1-NN classifier, irrelevant attributes skew the Euclidean distance com-
putations, harming classification accuracy (Rozsypal and Kubat 2003; Quirino and
Kubat 2010). In essence, the presence of irrelevant attributes “confuse” supervised
classifiers (Wu and Zhang 2004).

In addition, too many irrelevant attributes can greatly increase classification costs.

716 such as the

This issue is more readily apparent in applications of “lazy learners
1-NN classifier investigated in Testbed Problem 1. For example, the classification
costs of the 1-NN classifier increase linearly with respect to increases in the number

of attributes in the training data set.

Among the reasons for the presence of irrelevant attributes in data sets are:

1. Complexity of data collection: The complexity and/or monetary costs associ-
ated with the collection of more relevant attributes (i.e. the cost of collecting
deep ocean seismic soundings in order to better forecast underwater earthquakes
events or the inherent dangers of steering a ship into the eye of a hurricane in
order to collect precious inner-core soundings that can lead to better forecasts

of hurricane intensity and track);

16 ,azy learners are leaning methods which wait until a query is made to the classification system
before making any generalizations about the underlying relationship between training examples and
their labels. That is, no function is induced until a query is done to the system.
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2. Data collection errors: Sensor errors occurring during automatic data collection

can yield meaningless data.

3. Quality control: Failure by an expert to control the quality of the attributes
during the design stage of a data collection experiment, i.e. considering “shoe
size” as a relevant feature when making generalizations about an individual’s

car driving risk, and;

4. Unavailability of domain knowledge: The low availability of published domain
knowledge on a new research topic hinders the design of more relevant attributes
for data collection experiments, while at the same time promoting the adoption

of more “experimental” ones.

In summary, the presence of noise is common in real-world data sets and its re-
moval is a practical Machine Learning task. The removal of noise from data prior to
inducing a classifier’s model is an important step toward optimizing the performance
of supervised classifiers: maximizing their classification accuracy while minimizing
classification costs. In this work, data noise removal is the approach taken to build
optimal classifiers for Testbed Problems 1 and 2. To achieve this, two GAs were de-
signed and implemented (the baseline RK-GA for Testbed Problem 1 and the baseline
TM-GA, for Testbed Problem 2) to recognize and discard the harmful examples and

attributes hidden in data sets with the goal of building optimal classifiers.
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3.2 An Overview of Genetic Algorithms (GA)

The Genetic Algorithm (GA) is a popular approach to search and optimization. Over
the past decades, the GA has been applied to hundreds of real-world problems across
various domains of science (Karr and Freeman 1998; Haupt and Haupt 2004; Popescu,
Popescu, and Mastorakis 2009). The GA is part of a group of optimization techniques
known as Evolutionary Algorithms (EA). EAs exhibit three main traits. First, EAs
operate on populations (i.e. groups) of solutions that are generally randomly initial-
ized; the use of multiple solutions allows optimization problems to be solved in a
parallel fashion. Second, the solutions are improved iteratively though the sequen-
tial application of mechanism that mimic Darwinian biological evolutionary process
such as mating, recombination, mutation, and survival of the fittest. This process
is referred to as matural adaptation; better solutions evolve from existing solutions.
Third, EAs are “fitness-driven”. Under this paradigm, each solution in the popula-
tion represents a biological specimen whose genetic code (e.g. chromosomes) encodes
a potential solution to an optimization problem. The quality of the genetic code of
a specimen determines its ability to survive the environment. Moreover, the environ-
ment is determined by a fitness-function (X. Yu 2010) that captures each specimen’s
ability to optimize the objectives of a problems. Thus, EAs approach the task of
optimization by iteratively adapting the specimens in the population toward becom-
ing more “fit” to their environment. This approach is analogous to that of searching
through the space of possible solutions to an optimization problem by generating

newpsolutionspfrompexisting solutions (as opposed to random search) with the goal
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of discovering good solutions capable of optimizing the objectives described by the
fitness-function.

From among the various existing EAs, the GA is the most popular approach.
Its popularity is due to its generality when compared to other EAs. The GA is
a blueprint, or recipe, for writing computer programs capable of solving numerous
search and optimization problems. The initial blueprint of the GA was developed by
Holland (1975), and although it has been greatly extended, the basics still remain the
same. To start, a “population” of potential solutions (i.e. specimens) is maintained,
which is a typical trait of EAs. Each specimen carries one or more “chromosomes”
that encode a potential solution to an optimization problem. Specimens are evalu-
ated to determine their fitness to the environment. This process generally involves
decoding the solutions encoded in the chromosomes of specimens and measuring their
quality according to the user-defined fitness-function. In each succeeding iteration
(also referred to as a “generation”), the GA retains the most fit specimens from among
those of the previous generation and the generated “offspring.” Offsprings are gener-
ated using crossover and mutation operators. Crossover combines the chromosomes
of two specimens (also referred to as a “parent-pair”) to create two new children spec-
imens, echoing reproduction in the natural world. Mutation randomly modifies the
chromosomes of children specimens to introduce new information into the population,
allowing the GA to search in diverse regions of the space of possible solutions to an
optimization problem. Though the initial population is often composed of randomly
generated solutions, and thus performs poorly, performance improves greatly over

subsequent gencrations.
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The fitness-function and the chromosomal representation of the GA are the two
mechanisms that allows users to map the custom objectives of different optimization
problems into the realm of natural evolutionary adaptation. The fitness-function is
user-defined and it is responsible for providing the GA with feedback regarding the
quality of its discovered solutions. It is through the fitness-function that the user
guides the genetic search. The chromosomal representation allows the user to map
real-world solutions to optimization problems into a symbolic representation that is
suitable for genetic search. Chromosomes have traditionally been represented as bi-
nary (“0” or “1” valued) strings. This representation is very general and offers 2
main advantages. First, it facilitates the representation of real-valued solutions to
optimization problems (e.g. the radius of a circle, the bandwidth of a network route,
the number of tasks in a pipeline, and the accuracy of a classifier)!”. Second, the
individual bits of a binary string can also be used to indicate the absence (i.e. “0”) or
presence (i.e. “17) of objects, which facilitates the representation of solutions as sub-
sets of objects picked from larger sets of objects. For example, this representation was
used in the pioneering work of Kuncheva and Jain (1999), where binary strings were
used to represent subsets of examples and attributes from a data set that optimized
the accuracy of the 1-NN classifier.

The above discussion reveals one of the main advantages of the GA as an opti-
mization tool: the GA is “problem-agnostic”. That is, the GA makes no assumption

about the shape of the fitness-function being optimized. This feature makes the

1"When binary strings are used to represent real-valued solutions to an optimization problem, the
precision of the solutions depend on the length of the binary string. However, the GA computational
costs also increase proportionally to the length of the strings.
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GA a suitable tool for solving global optimization problems represented by fitness-
functions having numerous local minima/maxima and even discontinuities. Another
major advantage of the GA is that it can be used to solve multi-objective optimization
problems (Quirino and Kubat 2010) requiring the simultaneous optimization of mul-
tiple conflicting goals. When the GA is applied to such problems, the fitness-function
can be designed to capture the ability of the GA-generated solutions to optimize
all objectives of a problem simultaneously. One disadvantage of the GA is that its
convergence tends to be slow when applied to the optimization of “well-behaved”
fitness-functions. One reason is that the GA does not make use of properties of the
fitness-function, such as gradients, to guide the genetic search. Another reason is
that the stochasticity (i.e. randomness) introduced by the recombination and mu-
tation operators, which enable the GA to search through complex fitness-function
landscapes, also tend to slow down the GA convergence on “well-behaved” functions.

One of the main challenges involved in the design of new GAs is the need to pre-
vent the genetic search from converging prematurely to suboptimal solutions. This
is achieved by maintaining the diversity of information in the GA population. The
issue of premature convergence is inherent from the fact that the genetic search pro-
cess continuously looses information from its initial population of solutions with each
iteration (Shamir, Saad, and Marom 1993). This loss takes place as newly generated
and more “fit” solutions replace older and less “fit” solutions in the population; the
information that was available in the replaced solutions is simply lost. Eventually,
the GA runs out of information to generate new and better solutions and the genetic

search ends. While mechanisms such as mutation attempt to retard the effects of
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information loss by periodically introducing new information into the population, the
effect is only limited. For example, if high mutation rates were used in the GA, the
natural adaptation process would not occur because the generated children specimens
would not resemble their parent specimens. In that case, the genetic search would
be reduced to simple random search. Thus, preventing premature convergence in
the GA requires that all components of the genetic search process (e.g. mating, re-
combination, mutation, and even survival) work together to maintain the diversity of
information in the population in order to promote more efficient and diverse sampling

of the search space of possible solutions to optimization problems.

3.2.1 The GA as a Tool For Multi-Objective Optimization

The GA is an excellent tool for solving multi-objective optimization problems; those
problems having two or more mutually contradicting goals that must be simultane-
ously optimized. The majority of real-world problems are multi-objective in nature.
For example, the two testbed problems (detailed in Sections 3.3 and 3.4) chosen in this
work to evaluate the proposed IM-GA mating strategies are multi-objective optimiza-
tion problems. Solving these testbed problems require the simultaneous optimization
of the accuracy and size of supervised classifiers, which are mutually conflicting goals:
training a classifier with too little data may lead to poor classification accuracy with
low classification costs, however, training a classifier with too much data may improve
accuracy while heavily degrading classification costs.

Researchers have developed two main alternative techniques that allow the GA

torberappliedstortheroptimization of multi-objective problems (Coello 1999; Konak,
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Coit, and Smith 2006): (1) tailoring of the fitness-functions as a weighted sum of

optimization objectives, that combines all criteria into a single formula, and (2) the
use of a different “gender” in the GA for each of the conflicting goals. In particular,
the weighted sum technique has been adopted by various researchers who applied
their own versions of the GA to the 1-NN Tuning Problem, including Kuncheva and
Jain (1999, Ishibuchi and Nakashima (2000, Rozsypal and Kubat (2003, Quirino and
Kubat (2010). One drawback of these two techniques is that the relevance of the
optimization objectives is determined on a somewhat subjective basis. For example,
weight coefficients in the fitness-function are generally tuned manually to reflect the
relevance of different optimization objectives.

A more general approach lies on the principle of Pareto-dominance (Chen, Chen,
and Ho 2005), developed in the field of Multi-objective Evolutionary Algorithms
(MOEA) (Coello 1999)'8. In the presence of two or more optimization objectives,
solution X is deemed to be a “Pareto-improvement” over solution Y if X is better than
Y according to at least one optimization objective without being worse than Y along
any other objective (this is also referred to as “Y" is then Pareto-dominated by X”).
Moreover, the set of all Pareto non-dominated solutions to a problem is called the
Pareto-optimal set. Identifying the Pareto-optimal of a multi-objective optimization
problem is the main goal of MOEAs, which have the following features (Konak, Coit,

and Smith 2006):

1. MOEAs address optimization problems by identifying competing objective func-

tions;

8Coello (1999) offers a detailed survey on the development of MOEAs.
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2. MOEAs don’t require prioritization or scaling of objectives, which eliminates

the need for weights;

3. MOEAs yield multiple feasible solutions to a problem.

One of the first researchers to experiment with the Pareto-dominance framework
in Genetic Algorithms was Schaffer (1985), who employed it in his system VEGA.
VEGA splits the population at each generation into k£ sub-populations, each with
its own fitness-function. Parents in each sub-population are selected according to
one of these k different fitness-functions. The sub-populations are then merged, and
recombination is used to create a new generation. The technique sometimes led to
premature convergence, but experiments still showed it to outperform random search.
VEGA has been successfully applied to numerous applications (Coello 1999).

Pareto-based fitness-functions are also mentioned in Goldberg’s famous book (Gold-
berg 1989). The algorithm he describes searches for specimens that are Pareto non-
dominated with respect to the rest of the population. These specimens are assigned
the highest “rank” and are exempted from further competition. The process is re-
peated on the rest of the population until all specimens have thus been ranked. In the
experiments reported by Liepins et al. (1990), this approach outperformed VEGA in a
variety of set covering problems. Ritzel et al. (1994) employed Pareto-non-dominating
ranking, selection, and niching schemes in experiments related to cost and reliability

optimization.
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These early approaches inspired numerous other variations. Among these, atten-
tion deserve the Non-dominated Sorting Genetic Algorithm (NSGA) by Srinivas and
Deb (1994), and the Niched Pareto Genetic Algorithm (NPGA) by Coello (1999).
Both are characterized by their combined use of Pareto ranking and fitness sharing
as ‘“niching” mechanisms (to promote diversity in the Pareto fronts). For example,
NSGA starts by finding the first “front” of Pareto non-dominated specimens from
the population and assigning to them the same high “dummy” fitness value. A nor-
malized sharing function is then used to compute for each specimen its distances
from all other specimens in the front. The sum of these distances then defines this
specimen’s “niche count” that measures how much the spatial region surrounding the
specimen is crowded. The specimen’s fitness is computed by dividing its dummy fit-
ness value by its niche count. After the removal of the specimens in the first “front”
from the population, NSGA collects the subsequent Pareto non-dominated front and
assigns a dummy fitness value that is lower than the minimum shared fitness of the
previous front. The process is repeated until the entire population has been classi-
fied. The stochastic selection that follows is based on the final shared fitness: the
first non-dominated front is granted a greater portion of the recombination process.
Non-dominated sorting and “fitness sharing” allow NSGA efficient search in non-
dominated regions, and the sharing mechanism also allows NSGA to attain diverse
Pareto-optimal distributions. NSGA outperformed VEGA and other approaches in
numerous applications (Coello 1999).

More recent MOEAs also adopt the elitistic survival strategy (Bentley 1999), a

technique that speeds up MOEAs and improves their search performance. Represen-
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tative examples include the Strength Pareto Evolutionary Algorithm (Zitzler, Lau-
manns, and Thiele 1999) (SPEA), the Pareto Archived Evolution Strategy (Knowles
and Corne 2000) (PAES), and NSGA-II (Deb, Pratap, Agarwal, and Meyarivan 2002).
In particular, NSGA-II improved over NSGA by adopting a better sorting algorithm to
reduce the computational costs of population ranking and replacing the user-defined
sharing parameter with a “crowding density” measure that eliminated manual param-
eter tuning. NSGA-II also adopted survival-selection elitism to speed up convergence.

Among the numerous sub-classes of MOEAs, the Artificial Immune Systems (AIS)
received attention. It takes inspiration from immunology, where specialized B-cells
in the immune system can adapt to new types of antigens through such biological
processes as cloning and hypermutation (Hart and Timmis 2008). The first attempt to
use AIS in multi-objective optimization was the MISA approach by Coello and Cortes
(2005) that splits the population into two types: 1) antigens (Pareto non-dominated
solutions), and 2) antibodies (Pareto-dominated solutions). The fitness value of each
antibody is obtained from its similarity to a randomly selected antigen. A percentage
of the most fit antibodies are cloned and mutated at a rate inversely proportional to
each clone’s similarity to a randomly selected antigen. MISA’s emulation of immune
system adaptations was found to perform better than NSGA-IT and PAES. A more
recent adaptation is NNIA (Gong, Jiao, Du, and Bo 2008). Its unique feature is
its adaptation of NSGA-II's crowding distance measure into a fitness measure. The
intention is to give higher selection and recombination probability to solutions in less

crowded regions of the search space.
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3.2.2 The Use of Multiple Populations in Genetic Algorithms
The original motivation behind multi-population GA (also known as Parallel or Dis-
tributed GA) was the desire to harness multiple processors in solving large optimiza-
tion problems (Cantu-paz 1997b).!? Early work thus often ignored such issues as the
problem of premature convergence and promotion of diversity (niching) inherent from
the use of multiple populations in the GA, and focused instead on programmatic ways
to exploit massive parallelism. The fact that multi-population approaches may help
improve optimization properties of the GA was discovered later.

Three main types of parallel GAs have been studied. The simplest is the master-
slave GA that uses a single population but distributes the fitness-function calculations
among multiple processors. Another approach, the fine-grained parallel GA, imposes
mating restrictions on vast populations: the population is first spatially structured
and recombination is restricted to small neighborhoods that minimize communica-
tion among processing units; some neighborhoods overlap, allowing interactions. The
third, and most important, approach is the “multi-deme” or “multi-population” GA
that further reduced the communication costs of parallel GAs by evolving multiple
populations with periodic “interbreeding” (migration of individuals among popula-
tions). This is the philosophy behind one of our own techniques. In what follows, we
will use the terms “multi-deme” and “multi-population” interchangeably.

The one practical advantage of the multi-deme architecture is that it is basically
a simple extension of the single-population case—execution of a single-population

GA processes in_parallel computers, networked so as to periodically exchange a few

PCantu-paz (1997b) has an excellent survey on the origins of “multi-population GA”.
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individuals. Extending a single-population GA to a multi-population GA is thus quite

simple. Optimizing its performance is more difficult because of the added decision
factors such as population sizes, migration rates, and migration topologies (where
should migrants be allowed to go?).

One of the first studies of parameter tuning in multi-population GA was conducted
by Grosso (1985). His experimental setup comprised of 5 populations exchanging
individuals at a fixed rate over a “dynamic” topology where all populations were
allowed to communicate. Experiments showed that improvements in average fitness
were faster in smaller parallel populations than in a single large population. Isolating
small populations led to poorer final solutions, and the convergence speed was greatly
affected by migration rate—with low migration rates, the migrant individuals were
not well absorbed into the destination populations.

Various studies found that the performance of multi-population GA is greatly
affected by topology—the restrictions on how the populations are connected for
the purpose of exchanging individuals. A more recent study on “static migration”
topologies (Cantu-paz 1997a) investigated such topologies as uni-directional and bi-
directional rings, the 4 x 4 toroidal mesh, 4-D hypercubes, and fully connected topolo-
gies, and the configuration of the migratory connections remained unchanged through-
out the experiment. The main observation was that densely connected topologies
converged faster than sparse configurations.

Popular is also the “dynamic topology,” where the migratory connections are not
fixed. Each population is evaluated as a whole according to some criteria, and the

migrant is sent to where it has the greatest potential of “making a difference” (Grosso
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1985). Some studies showed that this accelerated convergence as compared to fixed
migration topologies (Munetomo, Takai, and Sato 1993; Lin, Punch, and Goodman
1994). In particular, Lin et al. (1994) utilized the genotypic distance between two
populations as the migratory criteria, while Munetomo et al. (1993) employed to this
end a measure of the diversity within a population.

The parameter-tuning problem extends to the multi-population algorithms. Some
authors therefore sought to develop algorithms that automatically tune their perfor-
mance. They proposed an approach that inputs the desired number of demes and
the migration topology, and outputs estimates of the required population size and
the number of epochs needed to achieve certain level of quality in the final solu-
tion (Cantu-paz 1999). The algorithm yielded accurate prediction for a handful of
different migration topologies.

The multi-population GA has been successfully applied to numerous multi-objective
applications, including synthesis of integrated circuits, generalized multi-modal func-
tion optimization, and even the feature selection problem. A representative approach
is the BMPGA algorithm (J. Yao 2005), designed to survey multi-modal function
environments. Here, fitness and gradient are derived from the function being opti-
mized. The idea behind this bi-objective evaluation is that the gradient term is a
better criterion for distinguishing between global and local maxima points than the
fitness-function. The population sizes can vary with each generation. An algorithm
was proposed to determine in each generation the correct cluster of each specimen.
The approach has its own way to measure similarity between a specimen and a pop-

ulation. This measure then determines how specimens are to migrate to different
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clusters. Experiments on various complex multi-modal functions favored BMPGA’s
performance over other genetic approaches.

Finally, the MGAF'S algorithm from H. Zhu (2006), which employs multi-population
GA principles for feature selection in 1-NN classifiers, randomly creates two sub-
populations, one biased toward chromosomes with prevailing zeroes, and the other
biased toward those with prevailing ones. The fitness-function is defined as the speci-
men’s accuracy, mating is rank based. Migration relies on the best-worst policy, where
the best specimen in a randomly chosen subpopulation replaces the worst specimen

in the other.

Gendered Genetic Algorithms

Another idea, though less common, seen in implementations of the multi-population
GA is to divide the specimens into multiple populations and allow them to mate
according to “gender” (Rukovansky 2009).

Goh et al. (2003) were able to show that sexual selection in the recombination
process can indeed improve the GA performance. In their implementation, they
distinguished exploration and exploitation. The program divides the population into
males and females. All females are allowed to reproduce (exploration), choosing males
by a mechanism that gives preference to males with higher fitness value (exploitation).
Experiments on diverse optimization problems showed that the scheme performed as
well or better than the (fitness-based) roulette wheel, tournament, and rank-based

stochastic selection schemes.
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Also the approach by Velazco and Bullinaria (2003b, Velazco and Bullinaria

(2003a) splits the population into males and females. Males are evaluated by the
fitness-function, and females are evaluated by a combination of age, fertility, and
fitness-function. Each gender has its own mutation rate.

Zhu et al. (2006) used age and gender to address premature convergence. They
gave higher exploratory ability to males through higher mutation rates, while giving
females higher local searching ability through lower mutations rates; mutation rates of
individuals grew with age. Male specimens were only allowed to mate upon reaching
a certain age, the idea being to make the resulting offsprings more stable.

Another version of the male-female duality has been proposed by Raguwanshi
and Kakde (2006). In their system FAS3, females are treated as “niches” of sub-
species in the population. Male specimens of a given species compete to mate with
representatives from female niches. Specimens that do not perform well in a number of
generations are merged with their nearby specimens. FAS3’s performance compared
favorably with asexual as well as gendered methods in a variety of experiments with
uni/multi-modal functions.

Finally, Lis and Eiben (1996) proposed a new way to exploit the Pareto-optimum
search in a multi-sexual GA paradigm they dubbed MSGA. In a domain with multiple
goals, MSGA represented each objective function by its own gender and by its own
sub-population. Each mating partner was selected from a different sub-population
in proportion to the values of their respective fitness-functions. To these parents,

uniform scanning crossover was applied, and each child was assigned the gender of
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the parent who donated more genes. At each generation, the Pareto non-dominated
solutions of the current and all previous generations were collected.
The subsequent sections report on previous research works that have specifically

applied the GA to the optimization of Testbed Problems 1 and 2.

3.3 What is the 1-NN Tuning Problem?

This section discusses Testbed Problem 1, the 1-NN Tuning problem, a well-known
optimization problem from the field of nearest-neighbor classifiers (k-NN). The 1-NN
Tuning Problem involves the simultaneous selection of optimal subsets of examples
and attributes (i.e. features or predictors) from a data set with the goal of maximizing
the accuracy while minimizing the classification costs of the 1-NN classifier (Rozsypal
and Kubat 2003).

A Ek-NN classifier keeps a store of “training examples,” each described by a vector
of attribute values and assigned a class label. When presented with a testing example,
x, the k-NN classifier assigns to it the class prevailing among the £ training examples
that have the shortest geometric distance from x (Cover and Hart 1967; Fix and
J. L. Hodges 1989). The 1-NN classifier is, thus, a special case k-NN where k£ = 1.
The training set is known to have a strong effect on the classifier’s behavior. Not only
that classification costs are high if there are too many training examples described
by too many attributes; but noise in the class labels and/or attribute values can
mislead the classifier; and if many of the attributes are unrelated to the output
class (“irrelevant attributes”), the geometric distances are skewed, degrading the

classification performance.

www.manaraa.com



70

These problems can be mitigated. For example, computational costs are re-
duced by indexing mechanisms (Freidman, Bentley, and Finkel 1977; Nene and Na-
yar 1997; Sproull 1991), and the other problems can be addressed by the removal
of noisy/redundant examples (referred to as the process of data editing) and by the
removal of noisy/irrelevant attributes (referred to as the process of feature selection).
Figure 3.2 illustrates the point. On the left is the original set of examples z1, . .., xg,
described by attributes ¥, ..., ys; on the right is the “reduced” training set obtained
by the removal of three attributes and four examples. The combined application of

data editing and feature selection is called k-NN tuning.

Feature Selection
_—

Yi 2 % Y Y Y

Xy

X 2 yZ y4 yh
X 3

X, Xs

Data Editing
>

Xs

X

Figure 3.2: Simultaneous feature selection and data editing (i.e. A-NN tuning).

k-NN tuning is in essence a multi-objective optimization problem that seeks to
maximize classification accuracy while minimizing the number of examples and the
number of attributes (i.e. classification costs). Let N and m, respectively, denote the
number of examples and attributes in a data set. Horowitz et al. (1997) showed that
the task can be cast as a binary optimization problems with N 4 m boolean decision
variables and an NP-hard search space of 2V*™ elements. Exponentially growing
costs being deemed prohibitive, scientists have searched for suboptimal, though ac-

ceptable, solutions. Many powerful techniques have been proposed (Ho, Liu, and Liu
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2002; Llora and Guiu 2003; Kuncheva and Bezdek 1998; Raymer, Punch, Goodman,

Kuhn, and Jain 2000; Hart 1968). This research work builds on the promising results
reported by several authors who have experimented with various versions of the GA.

A survey of these studies is presented next.

3.3.1 Classical Approaches to 1-NN Tuning

The Machine Learning literature has reported numerous techniques for both feature
and example selection, the oldest dating back to the 1960’s.2° The simplicity of these
classical non-GA-based approaches makes them popular even today, and they often
serve as benchmarks in comparisons (Rozsypal and Kubat 2003; Kuncheva ; Quirino
and Kubat 2010). As for example selection, the Wilson’s Edited Nearest-Neighbor
(E-NN) (Wilson 1972) and Hart’s Condensed Nearest-Neighbor (C-NN) (Hart 1968)
are the most famous. These techniques have inspired dozens of other more up-to-
date approaches (Angiulli 2005; Cano, Herrera, and Lozano 2003; Kuncheva and Jain
1999).

As for attribute selection, a representative approach is Sequential Forward Selection
(SES) (E. Cantu-Paz 2004), a greedy-search approach that starts with an empty set
of attributes and, in successive iterations, adds attributes that appear to be best
at improving the classifier’s accuracy. The opposite approach, Sequential Backward
Selection (SBS), starts with a complete set of attributes, and gradually removes those

that appear to be irrelevant. Another famous approach is the C4.5 Decision Trees

20The work in (Cano, Herrera, and Lozano 2003) presents a good overview of various heuristic
and genetic approaches to example selection.
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program developed by Quinlan (1993), that is known be very good at distinguishing

between relevant and irrelevant attributes in data sets.

3.3.2 1-NN Tuning Solved By Genetic Algorithms

Classical methods usually separated example selection from attribute selection. It
was only in the first attempt to employ the GA, that Kuncheva and Jain (1999)
combined the two tasks. In their GA, each specimen was described by binary chro-
mosomes, where each of the first Ng bits represented the presence (“1”) or absence
(“0”) of the corresponding example (total Ng examples), and each of the last N, bits
represented the presence (“1”) or absence (“0”) of the corresponding attribute (total
N, attributes). Every chromosome thus defined a 1-NN classifier that used the exam-
ples and attributes labeled with “1.” The fitness-function rested on the classification
performance against training set size.

The success of this approach inspired further research. Thus Ho et al. (2002)
improved the performance of this early solution by the use of the Intelligent Crossover
operator that employs orthogonal arrays and factor analysis to measure and quantify
the contribution of each individual gene to a specimen’s resulting fitness. This is then
used to select for crossover those genes that are likely to contribute more than others.
The approach was shown to outperform its immediate predecessor as well as some
non-genetic techniques.

Ishibuchi and Nakashima (2000) proposed further improvement in their HT-GA.
They experimented with various parameters of the GA, including varying mutation

andrfitness=functionsswThe most notable aspects are the use of different mutation
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rates for the “0” or “1” bits in a chromosome. In their experiments, the resulting
1-NN classifiers outperformed 10 other classification techniques.

Another improvement was proposed by Rozsypal and Kubat (2003) in their RK-
GA, which used a pair of variable-length chromosomes; one for examples, the other
for attributes. This encoding scheme made the chromosomes less costly to handle,
especially with large data sets. Experiments showed that the technique led to smaller
sets of examples and attributes without impairing classification performance. In this
work, an improved version of RK-GA, the baseline RK-GAq, was implemented and
used as the baseline GA for all experiments with Testbed Problem 1.

While the previous approaches relied on the weighted sum approach to combine
the multiple objectives of the 1-NN Tuning problem in their fitness-functions, Chen
et al. (2005) employed the Pareto-improvement approach (detailed in Section 3.2.1)
in their GA, the IMOEA. IMOEA curtailed the subjectivity of the weights in the
weighted sum approach (Coello 1999).

As for practical applications, the approach proposed by Cheatham and Rizki
(2006) used GA-tuned k-NN classifiers for text selection in web search. The fitness-
function combined classification accuracy with the size of the example set. Experi-
ments showed improvement over classical approaches as well over GA-based random
search. The authors also asked whether simultaneous optimization of example and
attribute sets outperformed their sequential optimization. Interestingly, in their par-
ticular domain, simultaneous search did not seem better. Apparently, certain domains
(in this case, the large number of attributes making classes almost linearly separable),

may call for different techniques.
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Some authors sought to demonstrate that GA can bring about improvement over
classical non-genetic approaches even when focusing only on one of the two aspects:
example selection or attribute selection. Sometimes, this makes sense. The attributes
could have been selected by knowledgeable experts, but the examples could each have
a different reliability. Alternatively, examples may be sparse relative to the number
of attributes of which many can be irrelevant.

Focusing on example selection, Gil-Pita and Yao (2007) used crossover operator
and mutation based on clusters of examples (rather than on individual examples),
the idea being that an example’s performance is better captured when it is associated
with other examples surrounding it in the instance space. The clusters are created
in every generation by the k-means algorithm. Crossover mixes clusters of examples,
and mutation is performed only in the example (within the given cluster) that most
improves the average fitness. In experiments on UCI data sets, the approach outper-
formed classical heuristic approaches, the price being the added overhead of k-means
clustering.

Focusing on attribute selection, Soryani and Rafat (2006) used a single-population
GA to reduce the dimensionality of large attribute sets in the field of optical character
recognition in Farsi, a problem characterized by a large number of attributes. As
the fitness-function, they used the k-NN classifier’s accuracy in matching individual
character patterns. The GA-tuned attribute sets yielded better recognition rates at
lower computational costs than earlier OCR techniques.

Similarly, the MGAFS (H. Zhu 2006) introduced a multi-population GA that

improved the k-NN accuracy through attribute selection. Two populations are ran-
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domly initialized, each with a different set of attributes. Population 1 initially selects
more attributes as relevant than population 2. In the course of the GA run, rele-
vant attributes replace less relevant ones, depending on the fitness-function which
measures the k-NN accuracy. In migration, the best specimen of one population re-
places the worst specimen of the other. In experiments, MGAFS outperformed the
single-population GA.

k-NN Tuning as a Binary Optimization Problem

Other approaches formulated k-NN tuning as a binary optimization problem. For
problems of this kind, a few GA techniques have been proposed. The most relevant
are CHC (Eshelman 1991) and PBIL (Cano, Herrera, and Lozano 2003) that have
been employed for attribute selection (S. Chen 1999) and example selection (Cano,
Herrera, and Lozano 2003).

In CHC, the fitness-function is used only in survival decisions; mating partners are
chosen at random. The program measures the Hamming distance between subsequent
pairs, and only those with distance above L/4 (where L is the chromosome length)
are allowed to mate. Recombination is carried out by a mechanism that randomly
exchanges exactly half of the bits in which the two mating chromosomes differ. The
program also has “incest prevention” mechanism that reduces the danger of premature
convergence. CHC' does not apply mutation to the generated children. Instead,
when the population converges to a local optimum (which coincides with the mating
threshold reaching 0), the program restarts the population by retaining a copy of

a-template-specimen”. and generating the remaining specimens by mutating this
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template. When applied to the 1-NN tuning problem, CHC' outperformed other

GA-based and non-GA-based techniques (S. Chen 1999; Cano, Herrera, and Lozano
2003).

PBIL (Cano, Herrera, and Lozano 2003) does not generate an actual population
of chromosomes. Instead, it initializes a probability vector whose length is equal to
the number of decision variables, and initializes its values to 0.5 (every bit has the
same chance of being 0 or 1). At each generation, PBIL creates a population by a
probability distribution determined by this vector. The vector is then updated by
being “pushed toward” the best solution and “pushed away” from the worst solution.
Adding small random values then mutates the probability vector. As a result, PBIL
keeps explicit statistics about the search space. These are then used to decide where
to sample next. In the experiments reported by Cano et al. (2003), PBIL compared

favorably with other approaches on example selection.

3.4 What is the Optimal Decision Forests Prob-
lem?

This section discusses Testbed Problem 2, the Optimal Decision Forests problem, a
well-known and complex optimization problem from the field of ensemble learning.
The Optimal Decision Forests problem inherits the optimization objectives of its par-
ent problem, the Optimal Classifier Ensemble problem (Chandra and Yao ). The
Optimal Decision Forest problem consists of the simultaneous optimization of (1) the
example and attribute sets used to induce decision trees (i.e. maximize classification

accuracy while minimizing classification costs) and (2) the grouping of the induced
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decision trees into diverse ensembles, where the classification behavior of the under-
lying classifiers disagree as much as possible (Hyafil and Rivest 1976; Murthy and
Salzberg 1995; Chikalov 2011).

The process of building decision forests requires the use of a decision tree inducer.
The C4.5 Decision Trees program (hereinafter “C4.5”) developed by Quinlan (1993)
is one of the most popular tools used for this purpose (Skurichina and Duin 2002).
C4.5 induces decision tree models by recruiting some of the most relevant attributes
in a training data set. At each tree node, starting at the root node, C.45 recursively
splits the training data set on the most informative attribute. The choice of the
attribute is based on the information gain ratio criterium. Numerical attributes
are handled by discretizing them at each tree node using a simple binary-split. A
user-defined threshold for the minimum number of examples per node controls the
induction process, which ends when the training data set cannot be split any further.
(4.5 is known to induce decision trees having low bias and high variance. This feature
makes it an ideal decision tree builder for use with ensemble generation techniques.
However, the training data set quality is known to have a strong effect on the quality
of the decision trees induced by C4.5. Classification costs are high if there are too
many training examples, and noise in the class labels and/or attribute values, as well
as irrelevant attributes, can mislead the classifier (Hall and Smith 1998; Ho 1998a).
These issues can be mitigated by the removal of harmful examples and noisy /irrelevant
attributes from the training data set prior to inducing a decision tree.

The Optimal Decision Forest problem is in essence a multi-objective optimization

problem; the goal of maximizing the classification accuracy of the individual deci-
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sion trees conflict with the goal of minimizing their overall classification agreement
(the latter implies high classification errors). Let N and m, respectively, denote the
number of examples and attributes in a data set. Also, let S denote the maximum
allowable size of the ensemble of decision trees in a particular problem. The task can
be cast as a binary optimization problems with s- (N +m) boolean decision variables

N+m) elements (Lu, Wu, Zhu, and Bongard

and an NP-complete search space of 25
2010; Chandra and Yao ). Compared to 1-NN Tuning problem (Testbed Problem
1), whose search space is in the order of 2¥*™  this problem is exponentially more
complex. Notice how the search costs grow exponentially, making brute-force search
for optimal decision forests simply prohibitive. As a result, scientist have searched
for suboptimal, though acceptable, solutions. Many powerful techniques have been
proposed over the years to generate accurate decision forests (Breiman 1996; Freund
and Schapire 1996; Breiman and Schapire 2001; Ho 1998b; Rokach 2008; Hu, Yu, and
Wang 2005). However, more can be done to reduce their classification costs. This
work builds on the promising results reported by several authors who have exper-

imented with various versions of both GA-based and non-GA-based techniques for

decision forests generation. A survey of these techniques is presented next.

3.4.1 The Role of Classifier Bias/Variance Trade-off In En-
semble Generation

The concept of classifier bias/variance trade-off that