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The Genetic Algorithm (GA) is a blueprint for writing computer programs ca-

pable of solving search and optimization problems. The GA blueprint describes an

iterative search process that seeks to improve the quality of an initial random set of

solutions (known as a “population of specimens”) with respect to some user-defined

optimization criteria. All of the components of this iterative search process mimic

Darwinian biological evolutionary processes such as mating, recombination, mutation,

and survival of the fittest. Thus, the GA is an evolutionary approach to search and

optimization.

The GA has been applied to thousands of research and industrial applications

across numerous domains of science. Due to its success and popularity, researchers

have attempted to improve various aspects of the GA search process over the years.

However, the impact of the mating strategy, which determines how existing solutions

to a problem are paired during the genetic search process to generate new and better

solutions, has so far been neglected in the rich and vast GA literature.

The long-standing conventional mating strategy, which has been used for decades

in implementations of the GA, is based on the random selection of mating partners.

This paradigm has known issues. First, due to its stochastic nature, the conventional
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mating strategy does not guarantee that the solutions paired to generate new solu-

tions have orthogonal (or independent) information content. This leads the GA to

under-utilize the information available for the genetic search process. Second, the

conventional mating strategy promotes highly-fit solutions to mate more often than

others. These highly-fit solutions eventually overrun the entire set of solutions during

the genetic search process, leading to issues of premature convergence to suboptimal

solutions.

The goal of this work is to show that the GA search process can be expedited,

with the quality of its solutions improved, by replacing the conventional mating strat-

egy with more sophisticated ones that are inspired from the Darwinian principle

of ”opposites-attract.” The mating strategies proposed in this work improve over

the conventional mating strategy, in which specimens (or solutions) have no mating

choice, by “endowing” specimens in the GA population with mating-instincts that

promote a more diverse pairing of solutions. The end result is an improved utilization

of the information available for the genetic search process to discover new and better

solutions and, consequently, a more efficient sampling of the solution search space of

complex optimization problems.

A total of five novel “instinct-based” mating strategies are proposed in this work.

Four of these mating strategies are designed as single-population GA mating strate-

gies, and one as a multi-population GA mating strategy. The five proposed mat-

ing strategies are collectively referred to by the acronym IM-GA, which stands for

Instinct-Based Mating in Genetic Algorithms. To measure the effectiveness of the pro-

posed mating strategies, they were tested on two well-known, complex optimization

iii
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problems from the domain of supervised classification: 1) the 1-NN Tuning prob-

lem (“Testbed Problem 1”), and 2) the Optimal Decision Forests problem (“Testbed

problem 2”). The 1-NN Tuning problem involves the search for optimal subsets of

examples and attributes that simultaneously maximize the accuracy and minimizes

the classification costs of the 1-NN classifier. The Optimal Decision Forests prob-

lem involves the search for highly-accurate and compact decision tree classifiers that

can be grouped into ensembles to simultaneously maximize their combined voting

classification accuracy while minimizing the overall classification costs.

Testbed Problem 1 was solved by an improved implementation of a well-known

GA, the RK-GA (hereinafter “baseline RK-GA0”). Testbed Problem 2 was solved by

a novel GA that was implemented for the purposes of this research, the baseline TM-

GA0. Rigorous experiments were performed to evaluate the performances of these two

GAs both with and without the proposed IM-GA “instinct-based” mating strategies.

The various data sets used in the experiments were taken from the well-known UCI

Machine Learning Repository.

The experimental results indicated a statistically significant increase in the search

speed of the GA when the IM-GA mating strategies were applied to the two chosen

testbed problems. Furthermore, this increased search speed did not come at the

cost of the quality of the discovered solutions and required only negligible additional

computational overhead. Therefore, this work shows that more sophisticated

mating strategies can indeed improve the genetic search process over the

conventional mating strategy.

iv
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To the author’s best knowledge, no other work has so far been developed that

combines both the single-population and multi-population versions of the GA with

the concept of “instinct-based” mating. Furthermore, the fact that the rich GA

literature has devoted less attention to mating strategies than what is deserved gives

this research work a “pioneering flavor.”

v
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CHAPTER 1

Introduction

The Genetic Algorithm (GA) is a popular approach to solving search and optimiza-

tion problems. The GA is a blueprint for writing programs that are capable of finding

good solutions to complex search and optimization problems under constrained com-

putational requirements (Holland 1975). The GA blueprint describes an iterative

optimization process. This process operates on a (initially) random set of solutions

to a problem (because it is assumed that optimal solutions are unknown) and im-

proves these solutions over a great number of iterations guided by some user-defined

optimization criteria.

A program written to implement the GA blueprint is known as an “implementation

of the GA”.1 Such programs will have an “evolutionary flavor” to them. That is

because the way solutions to optimization problems are represented in memory, as

well as how the operations applied iteratively to existing solutions to generate better

solutions are implemented, all mimic Darwinian biological evolutionary process such

1An implementation of the GA is a program written to implement the iterative search process
described by the GA blueprint. This implementation should have: 1) a representation of solutions to
an optimization problem known as specimens, 2) a process to randomly initialize the specimens, and
3) the implementation of an iterative process that improves the initially random solutions through
functions, or operators, that mimic the Darwinian evolutionary processes of mating, recombination,
mutation, and survival of the fitness. See Section 3.2 for a detailed overview of the GA.

1
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as mating (the paring of existing solutions to “mate”), recombination (the exchange

of genetic information between paired solutions to generate new and improved ones),

mutation (random distortions applied to the genetic information of newly generated

solutions), and survival of the fittest (solutions promising more favorable optimization

of a problem “survive” while all others are “killed-off”).2

Due to its immense generality, the GA has been successfully applied to numer-

ous search and optimization problems across various domains of science. Over the

years, researchers have “pushed the envelope” in applying the GA to numerous chal-

lenging, real-world optimization problems such as the automated computer design of

industrial equipment, electronic circuits, trading systems, water distribution systems,

turbines, wings, medicines, job scheduling systems, routing systems, and control sys-

tems, among numerous others problems (Karr and Freeman 1998; Haupt and Haupt

2004; Popescu, Popescu, and Mastorakis 2009), and in attempting to improve many

aspects of the GA iterative search process.

The mating strategy (or “mating”) is a key component of the genetic search pro-

cess. Mating determines how existing solutions to a problem are paired with the goal

of exchanging information to generate better solutions (e.g. mimicking Darwinian

natural adaptation). Unfortunately, the impact of the mating strategy on the per-

formance of genetic search has so far been neglected in the GA literature (Quirino

and Kubat 2010). While numerous previous research works have sought to optimize

genetic search by improving the other various components of the GA iterative process

2The implementations of the GA processes of mating, recombination, mutation, and survival as
functions are referred to as operators (i.e. the recombination operator and the mutation operator).
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(e.g. initialization, recombination, and survival) (Rozsypal and Kubat 2003; Ishibuchi

and Nakashima 2000; Ho, Liu, and Liu 2002), research attempts to improve mating

in the GA is still an area of scarce publications (Quirino and Kubat 2010).

There are two main reasons for the lack of research interest in optimizing the

mating strategy in genetic search. The primary reason is the existence of a long-

standing, conventional mating strategy which can be very easily used in practically

all implementations of the GA. This conventional mating strategy, which has been

successfully applied for decades in numerous applications of the GA, does not require

any domain-specific knowledge (i.e. it is problem-independent) and simply relies on

probabilistic distributions, built based on the user-defined fitness-function,3 to ran-

domly pair existing solutions to generate new solutions (or recombination).

The second reason for the lack of research interest on the optimization of mat-

ing in genetic search is that improving the mating process requires the adoption of

problem-dependent parameters. Performing more “informed” pairing of solutions in

the GA requires problem-dependent optimization criteria to be considered during

the mating process. The optimization criteria must somehow dictate how existing

solutions should be optimally paired in a manner that maximizes their potential to

generate better solutions that optimize the specific objectives of the problem under

investigation. Optimizing mating in genetic search is a problem-dependent task. In-

3In Genetic Algorithms, the fitness-function is a user-defined function that measures the quality
of the solutions generated through genetic search for a specific search or optimization problem. The
genetic search seeks to find solutions that optimize the fitness-function. Hence, the definition of
the fitness-function is a key issue in implementations of the GA. The fitness-function guides the
genetic search by pointing out which solutions are more favorable than others. The terms of the
fitness-functions reflect the different optimization objectives of a search problem, e.g. when using
a GA to optimize the accuracy of a classifier in a supervised learning problem, the fitness-function
may be defined as the accuracy of the GA-generated classifiers.



www.manaraa.com

4

tuitively, this complicates both the design and implementation of the GA mating

process. As a result, many researchers who are primarily interested on using the GA

as a “black-box” optimization tool in some arbitrary problems, will tend to adopt

the more conventional and generalized implementations of the GA over more custom

ones.

The tendency of the conventional mating strategy in genetic search is to promote

the pairing of solutions that promise the optimization of the fitness-function. That

is, the pairing of solutions to optimize the user-defined objectives of a given problem.

At first glance, this natural tendency of the conventional mating strategy seems very

adequate. However, conventional mating is known to lead the GA to prematurely

converge to suboptimal solutions (Shamir, Saad, and Marom 1993). The main issue

with the conventional mating strategy is that it favors the pairing of more

“fit” solutions for mating without regard to the relative diversity of the

information content of the paired solutions. A clear example of this “design

flaw” is that under the conventional mating strategy a solution is even allowed to

“mate-with-itself” due to the random pairing process. When this process is repeated

over many generations, it leads the GA population to be eventually overrun by highly-

fit solutions. The population ends up dominated by what are essentially “duplicates”

of the same highly-fit solution. At this stage, the genetic search ends due to an

undesired premature convergence to a generally suboptimal solution.

Understanding how the degenerative loss of information occurs in the GA, and

leads the population to be overrun by highly-fit solutions, requires examining the

sources and sinks of information in the GA. From the very first iteration, the GA
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search process starts loosing small amounts of the information available in its popula-

tion of solutions through the combined process of recombination and survival. When a

new solution is generated through recombination of an arbitrary pair of solutions and

then used to subsequently replace another existing solution in the population through

survival of the fittest, the information that was available in the replaced solution is

simply lost (or “information sink”). If the replaced solution was very different from

the newly generated solution, then a lot of information has been lost. And even in

the newly generated solution replaced one of its parent solutions, than at least some

information has been lost because a child solution generally contains only partial in-

formation from each of its parents, which is the nature of recombination. In summary,

the GA starts converging to a solution (optimal or not) from the very beginning of

its run. While different operators, such as the mutation operator, are introduced to

retard the effects of information loss in the GA, their impact is somewhat limited. For

example, using high mutation rates to inject new information into the population (or

“information source”) can lead the genetic search to essentially mimic random search,

since newly generated solutions would be very different from their parents (i.e. no

Darwinian adaptation would take place). On the other hand, low mutation rates

cannot efficiently inject new information into the population (Rozsypal and Kubat

2003; Shamir, Saad, and Marom 1993).

What the above discussion alludes to is that improving genetic search requires

the adoption of mechanisms capable of slowing-down the loss of information that

naturally occurs in the genetic search process. This is achieved by optimizing the use

of the information available in the existing solutions to a problem to generate new and
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better solutions in each iteration of the GA. Slowing down the information loss helps

prevent premature convergence to sub-optimal solutions by retaining more diversity

of information in the solution pool. This consequently improves the ability of the GA

to more effectively sample the solution space of a problem and find better solutions.

Dealing with information loss rate in genetic search is a critical consideration to

improving the GA.

Mating is a key component of the genetic search process that can be optimized

to reduce information loss in the GA. That is because, from among the various ge-

netic operators, the mating strategy is the one which determines how information is

used to generate new solutions. The mating process can be optimized in the GA by

abandoning the conventional mating strategy, which exacerbates the information loss

by leading highly-fit solutions to overrun the GA population, and adopting better

mating strategies that promote more diverse pairing of solutions. Moreover, promot-

ing diverse pairing of solutions entails that solutions paired for recombination should

“complement” each other according to some problem-dependent criteria. That is be-

cause paired solutions that “complement” each other according to problem-dependent

criteria must posses orthogonal (or independent) information contents relative to each

other. For example, a pair of decision tree classifiers that tend to misclassify differ-

ent testing examples, where the classification error is a problem-dependent criteria

in the domain of supervised learning, must have been trained with different input

parameters (i.e. different subsets of examples and attributes). That is, the behav-

ior of different solutions with respect to a problem-dependent criteria reflects their

information content relative to each other.
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In addition, promoting diverse pairing of solutions in the sense described above

would also allow the GA to more effectively sample the solution spaces of optimization

problems in search for new solutions that improve over existing ones. This may even

lead the GA to converge faster to optimal solutions. Because of the stochastic (ran-

dom) nature of conventional mating, and also because of its lack of consideration for

problem-dependent optimization criteria, conventional mating cannot guarantee that

solutions are optimally paired in a way that they somehow complement each other

along some problem-dependent optimization criteria. In other words, conventional

mating does not make optimal use of the information available in the GA population

of solutions in order to optimize genetic search.

The goal of this work is to show that more sophisticated mating strategies can

indeed optimize genetic search and lead the GA to faster convergence without im-

pacting the quality of its generated solutions. To this end, a total of five (5) novel

“instinct-based” mating strategies are proposed in this work to improve over the

long-standing, conventional mating strategy where specimens have no mating choice

(described above). The five proposed mating strategies “endow” specimens in the

GA population with “mating instincts” that guide them in their selection of mating

partners that “complement” their own abilities to optimize some problem-dependent

optimization criteria. As a result, the proposed mating strategies promote more di-

verse pairing of specimens having orthogonal (or independent) information content.

This process optimizes the genetic search by improving the utilization of

the information available in the GA population for the generation of better

solutions, slowing down the information loss inherent to the genetic search
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process, and allowing the GA to more effectively and diversely sample the

search spaces of optimization problems.

The concept of “instinct-based” mating proposed in this work was inspired from

the natural Darwinian principle of “opposites-attract” that is so common in nature.

Darwin pointed out in his Descent of Man (1859) that some animals give prefer-

ence to mating partners whose abilities “complement” their own. He mentioned as

an example that in those bird species where nest-building is a male responsibility,

females sometimes tend to instinctually test the nest-building ability of potential

mates. Furthermore, more recent research has indicated that human females tend to

prefer partners with a dissimilar genetic makeup (ScienceDaily 2009). Surprisingly,

these concepts have so far been neglected in applications of Genetic Algorithms. The

fact that the rich GA literature has devoted to mating strategies less attention than

what is deserved gives this work a “pioneering flavor.”

The five “instinct-based” mating strategies proposed in this work are collectively

referred to by the acronym IM-GA, which stands for Instinct-Based Mating in Genetic

Algorithms. Four of these strategies are designed as single-population mating strate-

gies4 and one as multi-population mating strategy.5 To evaluate the impact of these

proposed mating strategies on the performance of the GA, two well-known testbed

problems were chosen from the domain of supervised classification. The chosen

4The single-population GA uses one single population of specimens, or a single pool of potential
solutions, to solve optimization problems.

5The multi-population GA uses multiple populations of specimens, or multiple pools of potential
solutions, to solve an optimization problem. Generally, different populations evolve independently
with periodic interbreeding through exchange of specimens among the population. The design of
a multi-population GA is more complex than that of a single-population GA because of the added
complexities of choosing from which populations parent specimens should come from and into which
populations children specimens should be inserted to (i.e. migration).
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testbed problems were: 1) the 1-NN Tuning Problem (hereinafter “Testbed Prob-

lem 1”) and 2) the Optimal Decision Forests Problem (hereinafter “Testbed Prob-

lem 2”). Both testbed problems are complex optimization problems categorized as

NP-hard (Quirino and Kubat 2010) and NP-complete (Chandra and Yao ; Okun,

Valentini, and Re 2011) problems, respectively (see Section 2.2). This means that

no algorithms capable of solving these problems in polynomial time6 have yet been

developed. Both Testbed Problems 1 and 2 are described in detail in Chapter 3.

Since mating is only a component of the GA search process, two GAs were im-

plemented to facilitate the application of the proposed IM-GA mating strategies to

the optimization of Testbed Problems 1 and 2, respectively. To apply the IM-GA

mating strategies to the optimization of Testbed Problem 1, a well-known GA called

“RK-GA” was first re-implemented from the literature to find optimal 1-NN clas-

sifiers (Rozsypal and Kubat 2003). Moreover, the fitness-function of RK-GA was

improved and the resulting GA, referred to as the baseline RK-GA0, was then used

as the baseline for all experiments with Testbed Problem 1. Similarly, to apply the

IM-GA mating strategies to the optimization of Testbed Problem 2, a novel GA called

the baseline TM-GA0 was designed and implemented specifically for this research to

discovery optimal ensembles of decision tree classifiers (or optimal decision forests).

Note that both the baselines RK-GA0 and the TM-GA0 were designed to work

with the conventional mating strategy. Therefore, it was imperative to first evaluate

their performances without “instinct-based” mating to ensure that they were not

6Search and optimization problems that can be solved in the polynomial order of computational
time-complexity are considered cheap problems.
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strawman, or weak methods that would be easily improved by the application of the

IM-GA “instinct-based” mating strategies. To this end, the performance of both RK-

GA0 and TM-GA0 using the conventional mating strategy was evaluated first through

various experiments using 24 benchmark data sets from the UCI Machine Learning

Repository (Newman and Merz 1998). These experiments compared the performance

of the baselines RK-GA0 and TM-GA0 against those of state-of-the-art techniques

designed to solve Testbed Problems 1 and 2, respectively. The experiments yielded

a good set of baseline results for the performance of the baselines RK-GA0 and TM-

GA0 using the conventional mating strategy. Then, the five proposed IM-GA mating

strategies were introduced into the baselines RK-GA0 and TM-GA0, replacing the

conventional mating strategy with “instinct-based” ones, and the experiments were

rerun. Finally, the two sets of experimental results attained, (1) with conventional

mating, and (2) with “instinct-based” mating, were compared to evaluate the impact

of the IM-GA mating strategies on the performances of RK-GA0 and TM-GA0.

The experimental results presented in Chapter 5 confirmed that the proposed

IM-GA “instinct-based” mating strategies can accelerate the GA without impacting

the quality of the generated solutions. Furthermore, the results also indicated that

the faster convergence attained required only negligible additional GA computational

time. Thus, the conclusion is that genetic search can indeed be optimized

by the use of more sophisticated “instinct-based” mating strategies in the

GA mating process.
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1.1 Motivation and Research Objectives

The major motivation of this work is the fact that the impact of the mating strategy

on the performance of genetic search has been neglected in the GA literature and in

real-world applications of the GA. Over the years, researchers have proposed many

improvements to the various components of the GA search process, components other

than the mating strategy (Rozsypal and Kubat 2003; Ishibuchi and Nakashima 2000;

Ho, Liu, and Liu 2002).

For decades, a single paradigm for mating strategy has dominated implementa-

tions of the GA across various fields of science: random selection of mating partners

according to probabilistic distributions based on the fitness-function. This paradigm

has known issues (Shamir, Saad, and Marom 1993). First, it does not guarantee

that GA-generated solutions are paired based on their abilities to “complement” each

other in maximizing some problem-dependent optimization criteria. This is due to

the purely random selection of the mating partners promoted by the conventional

mating strategy. As a result of this “design flaw”, the conventional mating strategy

can severely under-utilize the diversity of information available in the GA population

for the generation of new and better solutions in each iteration of the genetic search.

Conventional mating inadvertently guides the genetic search into allowing highly-fit

specimens to overrun the GA population. This issue is known as premature conver-

gence to suboptimal solutions. Mitigating this issue, by proposing newer and more

sophisticated mating strategies, is a major motivation this work.
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Another major motivation of this work is to encourage other researchers to extend

the proposed ideas of “instinct-based” mating to speed up genetic search in their own

applications. The GA is one of the most competitive and frequently adopted heuristic

approaches to search and optimization, having been employed in countless real-world

industrial problems having large and complex search spaces (Safe, Carballido, Pon-

zoni, and Brignole 2004; Man, Tang, and Kwong 1996; Stender 1993). In some

industrial applications of the GA, a single fitness evaluation can require anywhere

from minutes to days to complete (Albert 2002). Those are prohibitive costs! Appli-

cations of the GA having prohibitively costly fitness evaluations can greatly benefit

from an improved mating process that requires less fitness evaluations to discover

comparably, or perhaps even better, solutions. This is a major motivation of this

work, to show that the GA mating process can be improved by more sophisticated

mating strategies that promote more diverse and efficient sampling of the solution

search space of optimization problems.

The primary set of research objectives of this work is concerned with speeding up

genetic search through improved mating strategies. The secondary set of objectives

is concerned with the development and/or improvement of the instruments needed

to both achieve and evaluate the impact of the primary set of objectives. In total,

the research objectives of this work are five fold:

• Research Objective 1: To design and implement five (5) novel “instinct-based”

mating strategies that improve over the conventional mating strategy, lead the
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GA to faster convergence without impacting the quality of generated solutions,

and require minimal additional computational overhead.

• Research Objective 2: To show that the proposed “instinct-based” mating

strategies can be applied to optimize genetic search in two complex testbed

problems from the domain of supervised classification.

• Research Objective 3: To propose principles that simplify to recognition of

useful “mating-instincts” in different optimization problems in order to facilitate

the extension of the proposed ideas to other real-world applications of the GA.

• Research Objective 4: To design and implement a new GA capable of discov-

ering both accurate and compact ensembles of decision trees (decision forests).

The goal is to improve the interpretability of decision forests, which has been

lost in applications of the classical ensemble learning methods (e.g. Bagging,

AdaBoost, and Random Forest). The classical methods require large ensembles

of large decision trees to work properly from a statistical point of view (reducing

classifier variance through averaging), which harms the interpretability of the

decision forests.

• Research Objective 5: To improve the original RK-GA, which was designed

to discover optimal 1-NN classifiers (i.e. accurate and compact), by modifying

its fitness-function with automatically-set weight parameters based on data set

relevant features. The goal is to eliminate the need for manual weight parameter

tuning in the fitness-function of RK-GA.
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1.2 Research Challenges

Various challenges were involved in completing each of the research objectives de-

scribed in Section 1.1. The research challenges varied from the design of new mating

strategies capable of optimizing genetic search over the long-standing, conventional

mating strategy, to the implementation of GAs capable of solving challenging opti-

mization problems, such as the 1-NN Tuning and Optimal Decision Forests problems.

One of the main challenges involved in this work was the definition of what consti-

tutes useful “mating-instincts” for optimization of the GA mating process. Thorough

research of the GA literature on the principles of mating in the GA, as well as a

thorough analysis of the genetic search process itself, revealed that the definition of

useful “mating-instincts” in the GA was problem-dependent: specimens in the GA

population should tend to mate with those that “complement” them on their own

abilities to optimize the objectives of the problem under investigation. It took time to

realize that “mating-instincts” defined using the above criteria should theoretically

promote the pairing of specimens having orthogonal (or independent) information,

which is reflected on their “complementary” behavior toward the optimization objec-

tives in question. For example, take a pair of specimens that represent two supervised

learning classifiers. If these classifiers tend to misclassify different examples in a test-

ing set, then they must have been built with somewhat orthogonal input parameters.

This is a deterministic cause-effect relationship reflected in the orthogonal classifica-

tion behavior of the classifiers. Hence, “mating-instincts” that are defined according

to the above criteria have the potential to theoretically promote more diverse pairing
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of solutions in the GA and consequently more diverse sampling of the search space of

optimization problems during genetic search.

The second research involved the actual selection of testbed problems. The choice

of testbed problem was critical because it defined the “mating-instincts.” The chosen

testbed problems should be well-known optimization problems that have been thor-

oughly investigated, and thus well-understood, by the research community. They

should preferably also have real-world applicability, in order to inspire other re-

searchers dealing with complex, computational intensive optimization problems to

extend the proposed ideas and benefit in their own research. Furthermore, the chosen

testbed problems should have optimization objectives that translated into an intu-

itive definition of useful “mating-instincts”, in order to facilitate the implementation

and evaluation of the proposed “instinct-based” mating ideas. The chosen testbed

problems were the 1-NN Tuning problem detailed in Section 3.3 and the Optimal

Decision Forests problem detailed in Section 3.4.

Another challenge involved the implementation of new GAs to facilitate the eval-

uation of the proposed “instinct-based” mating strategies on the performance of ge-

netic search applied to the two chosen testbed problems. Recall that mating is only

one component of the genetic search process, thus, GAs had to be implemented to

solve the two chosen testbed problems. Moreover, these GAs had to be designed

to work well (i.e. discover good solutions) with the conventional mating strategy

for two reasons: 1) in order to generate a good set of baseline experimental results

using the convention mating strategy to be compared to those results attained with

“instinct-based” mating, and 2) to ensure that any improvement brought forth by
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“instinct-based” mating on the performance of the GA was a real improvement, and

not due to mere chance. To this end, the well-known RK-GA (Rozsypal and Kubat

2003) was re-implemented from the GA literature, and further improved upon, for use

as the baseline GA (hereinafter “RK-GA0”) for all experiments with “instinct-based”

mating in Testbed Problem 1.

However, applying “instinct-based” mating to Testbed Problem 2 required the

design of a new GA, hereinafter TM-GA0. The main reason for this choice, instead

of simply picking an existing GA from the literature, was to extend the framework of

the original RK-GA which is applicable to single classifier optimization, to be also

applicable to the optimization of ensembles of classifiers. The main benefit of build-

ing a new GA by extending the original RK-GA’s framework stems from RK-GA’s

pioneering use of a variable-length, value-encoded specimen chromosome encoding

scheme. This chromosome-encoding scheme was found to significantly reduce the

GA’s computational costs when applied to large data sets. Thus, intuitively, given

that Testbed Problem 2 involves the simultaneous optimization of multiple decision

tree classifiers in an ensemble, the specimen chromosome-encoding scheme pioneered

by RK-GA was a prime design choice for use in a new GA capable of handling large

data sets efficiently.

There were further research challenges associated with the design of TM-GA0.

For example, in RK-GA a specimen represented a single 1-NN classifier. In TM-

GA0, however, a specimen represents multiple decision tree classifiers (induced with

the C4.5 Decision Trees program) in an ensemble of variable size. Thus, the design

of TM-GA0’s recombination process posed two new challenges: 1) how to best pair
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the actual decision trees composing paired decision forests for recombination, and 2)

how to pair the newly generated decision trees into new decision forests. The design

choice for TM-GA0’s recombination process that tackled these challenge is detailed

in Section 4.5.1.

Another major challenge in the design of TM-GA0 stemmed from the fact that

the C4.5 Decision Trees program tends to induce decision trees that over-fit their

training sets (Hall and Smith 1998; Ho 1998a). In this case, when the C4.5 Deci-

sion Trees classifier is optimized by a powerful optimization tool such as the GA,

the training set over-fitting potential can literally shoot-through-the-roof ! The main

reason for the explosive over-fitting behavior is that the classification accuracy of the

GA-generated decision forests is generally measured on the training set itself during

genetic search as a term in the fitness-function. Hence, the GA can be easily bi-

ased toward favoring the highly over-fit decision trees and corresponding ensembles

that are discovered during genetic search. In the design of TM-GA0, this issue was

dealt with by introducing a novel ensemble diversity measure into TM-GA0’s fitness-

function that prevented specimens (or decision forests) from being penalized for the

classification errors of its individual decision tree classifiers as long as those errors

did not impact the overall ensemble accuracy. Unfortunately, the existing ensemble

diversity measures described in the literature were not designed for use in the process

of building individual classifiers, but rather only on the process of grouping pre-built

classifiers into ensembles (Kuncheva 2003). The novel ensemble diversity measure was

dubbed the “triple-fault” measure because it measures the “complementary” classi-

fication behavior of every possible sub-ensemble of “3” decision trees from among all
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the decision trees making up a decision forest. The design of the novel “triplet-fault”

diversity measure is detailed in Section 4.5.1.

Similarly, the design of a fitness-function for TM-GA0 also posed a very challenging

task because the fitness-function needed to include terms that reflected both (1)

ensemble-level optimization objectives as well as (2) decision trees-level optimization

objectives. The detailed explanation on how this challenge was tackled in TM-GA0

is presented in Section 4.5.1.

Yet another challenge encountered in the design of TM-GA0 was the choice of

the stopping criteria, which determines when better solutions can no longer be dis-

covered by the genetic search. Choosing a stopping criteria is a common challenge

in the design of GAs (X. Yu 2010; Safe, Carballido, Ponzoni, and Brignole 2004).

For example, TM-GA0 cannot determine when the optimal decision forest has been

discovered because it does not know when a forest is optimal enough. This issue is

further complicated by the fact that the genetic search can sometimes become trapped

in a solution corresponding to some local optimal in the fitness-function. While the

genetic search might remain trapped there indefinitely, it can sometimes escape to

better solutions after an arbitrary number of iterations. To tackle these challenge,

TM-GA0 was allowed to run for an ample amount of iterations before it determined

that better solutions could not be discovered. The choice of stopping criteria for

TM-GA0 is detailed in Section 4.5.1.

Finally, another challenge involved in the design of TM-GA0 as well as in the

evaluation of the impact of “instinct-based” mating under Testbed Problem 2, was

the significant computational power required by TM-GA0. As discussed in
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Section 4.5.2, the computational time complexity of TM-GA0 is dominated by the

decision tree induction process (i.e. the time required by the C4.5 Decision Trees

program to induce decision trees). On average, during each experiment with data

sets from the UCI Machine Learning Repository, TM-GA0 generated approximately

300 decision trees and discovered 60 new decision forests per iteration of the GA.

Furthermore, TM-GA0 runs lasted from some few hundred iterations for smaller UCI

data sets to as many as 10, 000+ iterations for large and complex UCI data sets (i.e.

those having large number of examples, attributes, and classes). While TM-GA0 was

implemented as a program that made use of parallelization to build multiple decision

trees simultaneously during the recombination process, the actual off-the-shelf imple-

mentation of the C4.5 Decision Trees program that was used to induce decision trees

was not internally parallelized to more efficiently induce decision trees. Parallelization

of the C4.5 Decision Trees program is a complex task because numeric attributes have

to be re-evaluated at different levels of the decision tree induction process, which hin-

ders parallelization. As a consequence, the speed of the tree induction process slowed

down significantly when large data sets were used. Moreover, the process of build-

ing multiple decision trees in parallel also requires significant amount of memory to

store the induced decision tree models. This requirement is inherent from the com-

putational storage cost of the decision tree induction process, a cost which increases

proportionally to the size of the training data set, as detailed in Section 4.5.2.

In conclusion, various challenges were encountered during the execution of this

research. These challenges attest to the thought-provoking nature of the novel work

presented here.
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1.3 Summary of Contributions

The work presented here is likely to produce new and useful insights for Machine

Learning practitioners engaged in applications of Genetic Algorithms. There is the

potential to benefit for researchers across various domains of science who rely on

genetic search for the optimization of problems in their own research fields.

1.3.1 Faster Genetic Search with Minimal Computational

Overhead

One major contribution of this work to the field of Machine Learning are the five (5)

proposed IM-GA “instinct-based” mating strategies, which replace the long-standing,

conventional mating strategy, which based on random selection of mating partners.

The IM-GA mating strategies are more sophisticated strategies designed to mitigate

the issue that is premature convergence of the GA to suboptimal solutions generated

by the conventional mating strategy. The major advantages of the IM-GA mating

strategies over the conventional mating strategy are:

1. The IM-GA mating strategies promote statistically significant increased con-

vergence speed of the GA when compared to the conventional mating strategy

when applied to two complex optimization problems from the domain of super-

vised classification;

2. The IM-GA mating strategies do not impact the quality of the GA-generated

solutions when compared to the conventional mating strategy. Instead, the

quality of the generated solutions are often improved, and;
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3. The IM-GA mating strategies require only minimal additional computational

overhead when used to optimize the GA mating process.

In real-world terms, this means that applications of the GA that replace

the conventional mating strategy in favor of the IM-GA mating strategies

in their genetic search process, should discover just as good or perhaps

even better solutions, but in significantly shorter periods of computational

time. This benefit is confirmed in this research from the application of the IM-GA

mating strategies in the complex, real-world problems of optimizing the 1-NN classi-

fier (Testbed Problem 1) and building optimal ensembles of decision trees (Testbed

Problem 2). The results presented in Chapter 5 confirmed that the IM-GA

mating strategies indeed accelerated the search speeds of both the base-

lines RK-GA0 and TM-GA0 when compared to the conventional mating

strategy. Moreover, the increased search speed did not come at the cost

of the quality of the GA-generated solutions nor additional computational

overhead.

1.3.2 Improved Genetic Search In Various Optimization Prob-

lems

Another major contribution of this work to the field of Machine Learning is also

reflected as another major advantages of the proposed IM-GA mating strategies:

their applicability to numerous optimization problems in the domain of supervised

classification. This feature is due to IM-GA’s adoption of measures that are problem

domain dependent (as opposed to simply problem dependent) to implement “mating-
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instincts” in the GA mating process. The IM-GA mating strategies treat the classifier

being optimized in a problem as a “black-box.” Moreover, the “mating-instincts”

are implemented from measures relevant to the input parameters used to build the

classifiers (i.e. the example and attribute sets) and to the output (or response) of

the classifiers (i.e. the classification error on different testing examples). Hence, no

custom classifier dependent measures are required to improve genetic search through

the use of the IM-GA mating strategies. This feature was reflected in this work by the

simple application of the five proposed IM-GA mating strategies to the two chosen

testbed optimization problems from the domain of supervised classification. Because

of their adaptability, the applications of the proposed IM-GA mating strategies to

other problems in the domain of supervised classification are boundless.

1.3.3 A Novel GA-Based Approach To Building Decision

Forests

Another contribution of this work to the field of Machine Learning is the novel GA,

the TM-GA0, which was designed and implemented in this work to facilitate the ap-

plication of the proposed IM-GA mating strategies in Testbed problem 2; the Optimal

Decision Forests problem. As discussed in Chapter 5, the decision forests generated

by TM-GA0 were as accurate or better, as well as significantly more compact, than

those generated by the state-of-the-art, non-GA, ensemble learning approaches of

Bagging, AdaBoost, and Random Forest when applied to UCI data sets. The exper-

imental results revealed that the decision forests generated by TM-GA0 have three

main advantages over those generated by the non-GA approaches:
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1. Enhanced interpretability: TM-GA0’s decision forests are both accurate and

compact (i.e. optimal), making results much more easy to interpret when com-

pared to the large forests generated by the state-of-the-art, non GA approaches;

2. Low Memory Requirements: Due to their compactness, they consume signif-

icantly less memory than those generated by classical approaches. They can

be efficiently converted to a set of decision rules, stored in memory-constrained

micro-chips, and used in real-world applications, and;

3. Fast Classification Response: Also due to their compactness, their fast response

time (i.e. average number of tests required to classify an example) makes them

useful in real-world applications where real-time response is critical, and other-

wise large forests could not be practically used.

The optimal decision forests (i.e accurate and compact) generated by TM-GA0

are valuable tools for use in many real-world, real-time response demanding, memory

constrained applications.

1.3.4 Elimination of Manual Weight Tuning in the Original
RK-GA’s Fitness-Function

Another major contribution of this work is the modification made to the original

RK-GA’s fitness-function (see Equation 4.6 in Section 4.4.1) to eliminate the effort

of manual tuning of weight parameter. In the original RK-GA, the three weight

parameters c1, c2, and c3 were set to 1 to provide the same level of significance to all the

terms. This was done due to limited knowledge about the sensitivity of the GA to the

different terms of the fitness-function. However, this is not always desirable because
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the different terms of RK-GA’s fitness-function correspond to different optimization

objectives having diverse search space sizes. To eliminate this objection, the fitness-

function of the original RK-GA was modified in a manner that the weight parameters

are set automatically using measures that are data set relevant (see Section 4.4.2).

The proposed approach eliminated the effort involved in manually tuning the weight

parameters. Furthermore, the new automatically-set weight parameter values were

found to actually improve the performance of RK-GA. The new RK-GA, with the

modifications to the weight parameters, was dubbed the baseline RK-GA0 and used

in all experiments performed in this work with Testbed Problem 1, the 1-NN Tuning

problem.

1.4 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 introduces the problem statement

followed by a brief overview of the two complex optimization problems from the

domain of supervised classification that were chosen as testbeds for the evaluation of

proposed ideas. Moreover, the performance criteria applied to the two chosen testbed

problems are also reviewed. Chapter 3 surveys existing literature on the application

of both GA-based and non-GA-based, state-of-the-art approaches to solving the two

chosen testbed problems. Chapter 4 describes the five (5) proposed IM-GA mating

strategies as well as the GAs that were designed to facilitate the application of IM-

GA in the two chosen testbed problems, namely, the baselines RK-GA0 and TM-GA0.

Chapter 5 discusses the extensive experiments that were performed to evaluate the
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proposed ideas and presents the experimental results. The conclusion and ideas for

future research on “instinct-based” mating is presented in Chapter 6.
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CHAPTER 2

Improving the Genetic Algorithm

This chapter describes the research problem addressed by this work, the two testbed

problems chosen to evaluate the five (5) proposed IM-GA mating strategies, and the

performance criteria used.

2.1 Problem Statement

Whether the genetic search can be expedited, with the quality of the so-

lutions improved, and with minimal additional computational overhead

required, by more sophisticated mating strategies.

While the long-standing, conventional mating strategy is based on random selec-

tion, the mating strategies proposed in this work are based on the Darwinian principle

of “opposites-attract” commonly found in nature. In the conventional mating strat-

egy, specimens have no mating choice. In the mating strategies proposed in this work,

specimens are “endowed” with “mating instincts” that guide them in their selection

of mating partners that “complement” them according to some problem dependent

optimization criteria.

26
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The importance of this work lies on the fact that the impact of the mating strategy

on the performance of the GA has been neglected in the rich GA literature. This

work shows that more can done to optimize genetic search through improved mating

strategies that require negligible additional computation overheard.

2.2 Two Testbed Problems

A testbed problem is used to evaluate an idea. In this case, identifying testbeds

is important because the choice of the testbed determines the design of “mating-

instincts” for the proposed IM-GA mating strategies. Recall from the discussion

in the Introduction that the “mating instincts” proposed in this work are defined

according to the unique optimization criteria of a particular problem.

As was discussed in the Introduction, the domain of supervised classification offers

numerous optimization problems under which useful “mating-instincts” can be very

intuitively defined (see Section 4.1.1 for a more detailed elaboration). In this work,

two testbed problems were adopted from the domain of supervised classification to

evaluate the performance of the proposed IM-GA mating strategies. The chosen

testbed problems are:

1. Testbed Problem 1: The 1-NN Tuning problem, and;

2. Testbed Problem 2: The Optimal Decision Forests problem.

Both Testbed Problems 1 and 2 are complex optimization problems (NP-hard

and NP-complete, respectively), for which no algorithms have yet been developed to

directly or “quickly” (i.e. in polynomial order of computational time complexity) find
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optimal solutions (Quirino and Kubat 2010; Chandra and Yao ; Okun, Valentini, and

Re 2011). Finding “good” solutions to these problems is currently a task for heuristic

approaches such as the GA. Hence, improving the application of the GA in these

problems, as well as designing new and better GAs to solve them (as is accomplished

in this work through the design of the novel TM-GA0 for Testbed Problem 2) are

both useful contributions to the field of Machine Learning. Testbed Problems 1 and

2 are described in the next section.

2.2.1 The 1-NN Tuning Problem (Testbed Problem 1)

The first testbed optimization problem chosen from the domain of supervised clas-

sification is the 1-NN Tuning problem, which is more thoroughly elaborated in Sec-

tion 3.3. The 1-NN Tuning problem consists of the search for optimal subsets of

examples and attributes from a data set that optimize the classification accuracy

of the 1-NN classifier, while minimizing its classification costs (Rozsypal and Kubat

2003).

The 1-NN Tuning problem is an NP-hard problem that has been thoroughly inves-

tigated by the research community. Numerous heuristic approaches have been devel-

oped over the years to discover good solutions to the 1-NN Tuning Problem. These de-

veloped approaches consisted of both GA-based and non-GA-based approaches (Hart

1968; Wilson 1972; E. Cantu-Paz 2004; Ishibuchi and Nakashima 2000; Rozsypal and

Kubat 2003; Kuncheva and Jain 1999; Quirino and Kubat 2010). The GA-based

approaches seemed to have an advantage over the non-GA-based approaches because

they were capable of simultaneously optimizing both the example and attribute sets



www.manaraa.com

29

of a data set. In contrast, non-GA-based approaches attempted to optimize the exam-

ple and attribute sets sequentially (Quirino and Kubat 2010). An overview of various

GA-based and non-GA-based approaches to the 1-NN Tuning problem is given in

Sections 3.3.1 and 3.3.2.

In order to apply the proposed IM-GA “instinct-based” mating strategies to the

optimization of Testbed Problem 1, the well-known GA called the “RK-GA” (Rozsy-

pal and Kubat 2003) was re-implemented from the literature and further improved.

RK-GA pioneered in the use of a value-encoded, variable-length specimen chromo-

some representation that significantly reduced the computational costs associated

with the optimization of large data sets. Moreover, RK-GA compared favorably to

other well-known approaches to the 1-NN Tuning problem. As a result, RK-GA is

a good baseline GA onto which to implement the proposed IM-GA “instinct-based”

mating strategies and evaluate their impact on genetic search applied to Testbed

Problem 1. The new RK-GA, with the improvements developed in this work, is

hereinafter referred to as the baseline RK-GA0.

2.2.2 Optimal Decision Forest Problem (Testbed Problem 2)

The second testbed optimization problem chosen from the domain of supervised classi-

fication is the Optimal Decision Forests problem, which is more thoroughly elaborated

in Section 3.4. The Optimal Decision Forest problem consists of the search for opti-

mal decision trees (i.e. both highly-accurate and compact decision trees) that when

combined into an ensemble (or decision forest) are capable of “complementing” each

others’ classification errors in order to maximize the ensemble classification accuracy



www.manaraa.com

30

while also minimizing the overall ensemble classification costs (i.e. minimizing the

number of tests required to classify unknown examples) (Chandra and Yao ).

Finding optimal decision forests requires the simultaneous optimization of multiple

objectives: 1) optimizing the example and attribute sets used to induce decision

trees (i.e. maximize classification accuracy and minimize the size of the decision

trees), and 2) optimizing the grouping of the decision trees into ensembles to attain

higher predictive power than any individual decision tree in the ensemble. These

optimization tasks make up an NP-complete problem (Hyafil and Rivest 1976; Murthy

and Salzberg 1995; Chandra and Yao ; Chikalov 2011).

Building optimal ensembles of classifiers is a popular research topic in Machine

Learning because classifier ensembles have been found both empirically and theoret-

ically to outperform single classifiers. According to Thomas Dietterich, a pioneer in

ensemble learning research, classifier ensemble learning is a major research direction

in Machine Learning (Dietterich 1997). Over the years, both GA-based and non-GA-

based approaches have been developed to search for optimal decision forests (Oza

and Tumer 2008; Rokach 2010). An overview of representative approaches is given in

Sections 3.4.3 and 3.4.4.

In order to apply the proposed IM-GA “instinct-based” mating strategies to the

optimization of Testbed Problem 2, a novel GA called the “baseline TM-GA0” was

implemented specifically for the needs of this research. TM-GA0 extends the original

RK-GA’s single classifier optimization framework, which relies on the conventional

mating strategy, into a framework for the optimization of variable sized ensembles

of classifiers. The results of rigorous experiments comparing TM-GA0’s performance
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to those of state-of-the-art, non-GA-based ensemble learning approaches of Bagging,

AdaBoost, and Random Forest are given in Chapter 5. The results show that TM-GA0

compared favorably to these state-of-the-art approaches under various performance

criteria. As a result, TM-GA0 is a good baseline GA onto which to implement the

proposed IM-GA “instinct-based” mating strategies and evaluate their impact on

genetic search applied to Testbed Problem 2.

2.3 Performance Criteria

This section describes the different criteria that were used to evaluate the performance

of the GA with and without the application of the IM-GA “instinct-based” mating

strategies. The performance of the GA is measured both by its search speed (defined

in the subsequent section) as well as by the quality of its final generated solutions:

the 1-NN classifier in Testbed Problem 1 and the decision forest (ensemble of C4.5

Decision Trees) classifier in Testbed Problem 2. The chosen performance criteria have

been commonly used throughout the GA literature (Quirino and Kubat 2010; Lim

and Shih 2000; Alkhalid, Chikalov, and Moshkov 2011; Murthy and Salzberg 1995).

Most of the performance criteria used to evaluate the GA under Testbed Problems

1 and 2 are common. These common criteria include:

• Common Criterium 1: The classification accuracy of the GA-generated classi-

fiers, and;

• Common Criterium 2: The “attribute set reduction” ability of the GA (i.e. the

ability to remove of noisy/irrelevant attributes from a data set).
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Other criteria were also adopted to measures the complexity of the GA-generated

classifiers in Testbed Problems 1 and 2. Measuring classifier model complexity is cor-

related to measuring classification costs, which is a classifier dependent task. That is

because different classifiers have different internal models (i.e. a decision tree classifier

is represented by test nodes or decision rules while a 1-NN classifier is represented by

the raw examples in its training data set).

To measure the complexity of the GA-generated 1-NN classifiers in Testbed prob-

lem 1, the “example set reduction” ability of the GA (i.e. removal of noisy/redundant

examples from a data set) was used. In addition, the Common Criterium 2 listed

above, the “attribute set reduction” ability of the GA, was also used as a measure

of the complexity of the 1-NN classifier. Both of these measures are relevant to the

complexity of the 1-NN classifier because the classification costs of the 1-NN classifier

increase proportionally with respect to the number of examples and attributes in the

training data set (Quirino and Kubat 2010). The complexity of a decision forests was

measured by summing-up the measures from the individual decision trees making up

the decision forest.

The performances of the baselines RK-GA0 and TM-GA0 (using the conventional

mating strategy) according to the criteria above were compared to those of existing

state-of-the-art approaches for the generation of 1-NN classifier and decision forests,

respectively. This was done to ensure that both RK-GA0 and TM-GA0 are not weak

GAs that could be easily improved by the application of the five proposed IM-GA

“instinct-based” mating strategies.
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To evaluate the impact of the five IM-GA “instinct-based” mating strategies on

the performances of RK-GA0 (in Testbed Problem 1) and TM-GA0 (in Testbed Prob-

lem 2), experiments with RK-GA0 and TM-GA0 were first performed using the con-

ventional mating strategy and the results were collected. Then, the IM-GA mating

strategies were introduced into both RK-GA0 and TM-GA0 and the experiments were

rerun. The two sets of experimental results were then compared using the chosen per-

formance criteria described in the following sections.

Finally, note that all experiments were performed using various benchmark data

sets from acquired from the UCI Machine Learning Repository. For all techniques

used in this work, both GA-based and non-GA-based, the experiments with each UCI

data set were run as 5-fold cross-validation, repeated 10 times for different seeds of

the random number generator. This corresponds to a total of 50 experiments per UCI

data set per technique used in this work. The statistical significance of the differences

in performances among the various techniques was assessed by the paired t-test with

5% confidence level.

2.3.1 Genetic Search Speed

The genetic search speed (or convergence speed) is the most important performance

criteria used to evaluate the impact of the proposed IM-GA “instinct-based” mating

strategies on the performances both baselines RK-GA0 and TM-GA0. The genetic

search speed is used to determine whether or not the IM-GA “instinct-based” mating

indeed lead the GA to faster convergence: the ability to discover good solution in a

minimum number of generations (or iterations). In the experiments with each UCI
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data set, convergence speed was defined as the time required for the average specimen

accuracy78 of each GA to reach a certain convergence target.

Understanding that the number of generations is inappropriate for measuring

time (e.g. larger populations need fewer generations), and that CPU-time is highly

dependent both on the available computing power as well as the programmer’s skills,

time was measured instead by the number of fitness-function evaluations. Time

ranged from t=0, at the start of the GA run, to t=total fitness evaluations at the

convergence target. This measure of time was used in a previous work, and it avoids

biases (Quirino and Kubat 2010).

Additionally, the convergence target was set differently for RK-GA0 and TM-GA0,

since each deal with a unique classifier having different susceptibility to over-fitting.

For RK-GA0, the convergence target was set as the value corresponding to the accu-

racy of the 1-NN classifier (averaged values obtained from multiple cross-validation

runs and presented in Table 5.6). However, for TM-GA0, the convergence target was

set as the value corresponding to the 95th-percentile (or 95%) of the accuracy of the

C4.5 Decision Trees program (averaged values obtained from multiple cross-validation

runs and presented in Table 5.17). The convergence targets of RK-GA0 and TM-GA0

differ because TM-GA0 seeks to optimize the C4.5 Decision Trees program, which

tends to induce decision trees that very easily over-fit their training sets. In contrast,

the 1-NN classifier optimized by RK-GA0 is less prone to over-fitting. Hence, the

convergence target for TM-GA0 was chosen to prevent it from undershooting the val-

7Contrast the top-fitness specimen’s accuracy, which is more random.
8The average specimen accuracy is measured as the average classification accuracy of the classi-

fiers represented by the GA population
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ues given in Table 5.17 since it avoids over-fitting the decision trees induced by the

C4.5 Decision Trees program during genetic search.

Figure 2.1: Convergence speed of the baseline RK-GA0 with and without the IM-GA
strategies in the UCI bupa data set.

To demonstrate how the GA convergence typically accelerated with the use of

the IM-GA mating strategies, Figure 2.1 shows how the average specimen accuracy

improved over time (measured by the total number of fitness-function evaluations) for

the baseline RK-GA0
9 and three selected IM-GA mating strategies on the UCI data

set “bupa” (all five proposed IM-GA mating strategies are discussed in Chapter 4,

9The baseline RK-GA0 is an improved version of the original RK-GA that was implemented in
this work. Just as the original RK-GA, the baseline RK-GA0 also relies on the conventional mating
strategy to solve Testbed Problem 1.
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Figure 2.2: Convergence speed of the baseline TM-GA0 with and without the IM-GA
strategies in the UCI car data set.

and these results are simple illustrations). The plot presents results averaged over

repeated cross-validation runs. Notice that in the IM-GA strategies, the average

accuracy of the induced 1-NN classifiers grew faster than in the baseline RK-GA0.

Similarly, Figure 2.2 shows how the baseline TM-GA0’s convergence typically

accelerated with the use IM-GA mating strategies (the same three strategies illus-

trated in Figure 2.1) on the UCI data set “car.” The plot presents results averaged

over repeated cross-validation runs. Notice that in the IM-GA strategies, the average

accuracy of the induced decision forests (whose decision trees were induced by the

C4.5 Decision Trees program) grew faster than in the baseline TM-GA0.
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2.3.2 Classification Accuracy

In the Machine Learning literature, the classification accuracy is the main criteria

used to evaluate the performance of supervised learning classifiers. The classifica-

tion accuracy of a classifier is formally measured as the percentage of examples in a

separate testing data set10 that are correctly “labeled” by a classifier. Additionally,

the classification accuracy is the primary optimization objective in the definition of

Testbed Problems 1 and 2. Hence, both baselines RK-GA0 and TM-GA0 contain

classification accuracy terms in their respective fitness-functions. During the genetic

search, the classification accuracies of the classifiers discovered by both RK-GA0 and

TM-GA0 are measured through evaluation on the training data set examples.

2.3.3 Data Set Reduction

This section describes a performance criteria used to measure how well the GA is

able to recognize and discard noisy examples (i.e. having wrong class labels), re-

dundant examples (i.e. promoting increased training and classification costs), and

noisy/irrelevant attributes from a data set in order to build better classifiers. The

ability of the GA to recognize and discard noisy/redundant examples in data set is

referred to as the “example set reduction” ability. The ability of the GA to recognize

and discard the noisy/irrelevant attributes in a data set is referred to as “attribute

set reduction” ability.

In Machine Learning, data quality is known to impact the quality of the classifiers

built. Removal of harmful examples and attributes from the training data set prior

10A testing data set usually refers to a separate set of data that was not used to train a classifier.
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to building a classifier is an absolute requirement for the simultaneous optimization

of classification accuracy and classifier model complexity (i.e. size or memory foot-

print) (Zhu, Wu, and Chen 2003; Dietterich 1995). Hence, this work evaluates the

ability of the GA to optimize both the example and attribute sets used to build a

classifier by discarding noisy/redundant examples and noisy/irrelevant attributes.

Attribute Set Reduction In Testbed Problems 1 and 2

To evaluate the “attribute set reduction” ability, two steps were taken following the

examples from (Rozsypal and Kubat 2003; Quirino and Kubat 2010). First, irrelevant

(or artificial) attributes were introduced into the UCI data sets used for experimen-

tation. This was done because UCI data sets are known to have been designed by

experts and consequently have mostly relevant attributes. Those attributes origi-

nally present in the UCI data sets are referred to as “original attributes”, and those

irrelevant attributes that were manually introduced are referred to as “artificial at-

tributes”. Second, two measures were used to capture the “attribute set reduction”

ability of the GA. The two measure are as follows:

• Measure 1: The percentage of “original” attributes retained by each of the

GA-generated classifiers, and;

• Measure 2: The percentage of “artificial” (irrelevant) attributes retained by

each the GA-generated classifiers.

Notice that both Measures 1 and 2 capture the ability of the GA to discover clas-

sifiers with compact models (i.e. using less attributes). However, more importantly,
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Measure 2 clearly captures the ability of the GA to discard the irrelevant attributes

in a data set.

Example Set Reduction in Testbed Problem 1 Only

The size of the example set used to train a classifier is a measure of classifier complex-

ity that is more relevant when applied to the 1-NN classifier (investigated in Testbed

Problem 1) than to the decision tree classifier (investigated in Testbed Problem 2).

That is because the number of examples in a training data set directly impacts the

classification costs of the 1-NN classifier. Indeed, the ability of the GA to remove

noisy/redundant examples from a data set is an important optimization objective for

both Testbed Problems 1 and 2. However, in terms of measuring classifier model

complexity, the complexity of a decision tree classifier is better captured by criteria

such as the total number of nodes, the total number of leaves, and the average number

tests required to classify an example. Hence, the “example set reduction” ability of

the GA is used as a performance criteria for Testbed Problem 1 only. Criteria that

are more relevant for measuring the complexity of decision tree model are presented

in the next section.

The “example set reduction” ability of the GA was evaluated in Testbed Problem

1 by measuring the percentage of examples retained by each of the GA-generated

1-NN classifiers.

2.3.4 Classification Costs Reduction In Testbed Problem 2

This section describes the performance criteria chosen to evaluate the complexity

(or size) of the GA-generated decision forests in Testbed Problem 2. The criteria
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discussed here have been commonly used in the literature as measures of classifi-

cation costs for decision trees and, thus, can be analogously extended to decision

forests (Murthy and Salzberg 1995; Lim and Shih 2000; Alkhalid, Chikalov, and

Moshkov 2011).

In addition to the common “attribute set reduction” criterium described in the

previous section, which is a suitable measure of decision forest complexity, four ad-

ditional measures were adopted to further capture the different aspects of the model

complexity of decision forests. These four measures are cumulative measures com-

puted by summing-up the measures for the individual decision trees in a decision

forest. For example, given a decision forest, the following four measures were com-

puted:

• Measure 1: The number of trees making up the decision forest (or ensemble

size);

• Measure 2: The total sum of the number of nodes in all decision trees making

up the decision forest;

• Measure 3: The total sum of the number of leaves (or decision rules) in all

decision trees making up the decision forest, and;

• Measure 4: The total sum of the average number of tests required to classify an

example by each decision tree making up the decision forest. Each decision tree

in a decision forest may require a different average number of tests to classify an

unknown example. These average number of tests were added up for all trees.
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Notice how Measures 1, 2, and 3 combined reflect the computational storage cost

of a decision forest (i.e. the amount of memory needed to store the decision tree

models). In addition, Measures 1, 3, and 4 combined reflect the computational time

cost associated with the classification of an unknown example by a decision forest.
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Literature Review

This chapter reviews principles from the field of Artificial Intelligence (AI) that are

relevant to this work. In particular, this work builds upon ideas from two main

sub-fields of AI: (1) Genetic Algorithms (GA) from the AI sub-field of Evolution-

ary Computation and (2) Supervised classification from the AI sub-field of Machine

Learning. Both of these sub-fields have have been thoroughly investigated in the

rich and vast Machine Learning literature. Research works related to the GA have

sought to both improve genetic search as well as apply it to numerous search and

optimization problems across various domains of sciences. Similarly, works related to

the domain of supervised classification have sought to create more accurate, compact,

interpretable, and generalized techniques capable of extracting relevant information

patterns from imperfect sets of labeled examples. Some researchers have also investi-

gated the conjoint applications of these two sub-fields by making use of the natural

connection between learning and search. For example, the problem of inducing the

most accurate and compact version of a given supervised classifier can be theoreti-

cally solved by searching through countless possible configurations of such classifier

42
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for the optimal one. Thus, learning and search can be viewed as complementary AI

research topics.

The review begins with an introduction to supervised classification, which is con-

sidered one of the most important tasks in the field of Machine Learning. Moreover,

a key issue in supervised classification is discussed: the impact of data quality on

the performance of supervised classifiers. In this work, this key issue was addressed

through the design and implementation of GAs capable of discovering optimal sub-

sets of example and attributes from data sets with the goal of inducing more accurate

and compact classifiers. Next, an introduction to the GA is given that provides an

overview of various principles constituents of genetic search. Finally, a survey is pre-

sented on previous works related to the application of the GA to the two chosen

testbed problems from the domain of supervised classification: 1) the 1-NN Tuning

problem, and 2) the Optimal Decision Forests problem.

3.1 Machine Learning - Learning Relevant Pat-

terns From Imperfect Data

Machine learning is a central research topic in the field of Artificial Intelligence (AI),

a branch of computer science concerned with creating systems that mimic human in-

telligence. Under AI, Machine Learning is the scientific discipline concerned with the

development of techniques that allow computers to use example data (i.e. observa-

tions) to solve problems (Alpaydin 2004). This concept of solving problems based on

past experiences (i.e. observations) is founded on the universal principle of inductive

inference: the ability to infer general rules about the nature of statistical processes
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from imperfect observed data in order to make predictions on future data (Angluin

and Smith 1983).

One of the main reasons why the study of Machine Learning is important to the

engineering sciences is because various engineering problems can only be adequately

defined through examples11. In numerous engineering problems, the response of a

system (i.e. its output value) to predetermined input values is known. However,

the internal function of the system itself, which describes the concise relationship

between the input and the output values, is unknown. Moreover, in many problems,

the amount of data available to define the input and output values is very large,

making it very difficult for a human to generalize a concise relationship between the

input and response of a system (Nilsson 1998). This issue is further aggravated by

the presence of noise in the observed data, which can mislead the interpretation of

intrinsic relationships between input and output values by a human. For example,

the UCI sonar data set described in Table 5.1 is a classical example of a complex

supervised classification problem that can only be adequately described by examples

(i.e. observations). The goal of this problem is to determine whether a detected

cylindrical object is either a “rock” or a “metal” based on the energy in the frequency

spectrum of reflected sonar signals (Gorman and Sejnowski 1988). The examples in

11An example represents some observation about the input and response of a system. An example
is described by a pair of (1) a set of real, boolean (“0” or “1”), or categorical-valued (i.e. discrete
and finite values) attributes representing the input to a system and (2) either a label that categorizes
the example into a group (i.e. category or class) or a real value representing the observed response
of a system. Moreover, when examples carry labels, the process of inferring a function that maps the
attribute values to the labels is known as a classification problem. In contrast, when the examples
carry a real value instead of a label to represent the response of a system, the process of inferring a
function that maps the attribute values to the real value is known as a regression problem. Moreover,
in some Machine Learning applications, examples can belong to multiple groups and, thus, have
multiple class labels.
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the sonar data set describe a complex relationship between the properties of the sonar

signal emitter (i.e. the angle, aperture, and power of the emitted sonar signals),

the material properties of the cylindrical objects, and the energy spectrum of the

reflected sonar signals. The goal of Machine Learning is to develop algorithms that

allow computers to automatically decipher such complex relationships and represent

them as functions that accurately map sets of input values to their corresponding

observed output values.

In Machine Learning problems where the response of the system under investi-

gation is a categorical value (i.e. taking on discrete and finite values)12, supervised

classification is the Machine Learning task of deciphering the complex relationships

between the attribute values of a set of examples (representing the input values to a

system) and the observed labels of the examples (representing the system’s response

to a given input) with the goal of making intelligent predictions on the categories

of future unlabeled examples. Supervised classification, and its inherent issues, is

described in detail in the following section.

3.1.1 Supervised Classification - Learning How to Discrimi-

nate From Examples

Classification is, in essence, the task of predicting the group membership (i.e. class) of

objects. It is a process which occurs naturally and continually in our everyday lives.

For example, classification takes place when recognizing familiar faces (e.g. John

versus Mary) or different objects on a desk (e.g. pencil versus pen), when discrim-

inating between the road and a pedestrian while driving, when learning new routes

12Contrast systems whose response are real values.
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to or from work in order to avoid known heavy traffic patterns, or when predicting

a friend’s reaction to a re-occurring circumstance. In general, classification involves

the processes of learning from examples (or past experiences), and consequently also

predicting the outcome of different situations.

When applied to computer related applications, the objects are simply represented

by data examples. Supervised classification predicts the class (or label) of unknown

examples (i.e. those without labels) by comparing their observed properties (i.e.

attribute values) to those of known examples (i.e. those with labels). In essence,

supervised classification is the Machine Learning task of inferring a function that

accurately maps the attribute values of known examples to their corresponding la-

bels with the goal of making intelligent predictions on the class of future unknown

examples.

Algorithms designed to infer a function for a given classification problem are called

supervised classifiers (hereinafter “classifier”). The process of building a classifier is

referred to as “training a classifier”, an alias that reflects the fact that the learning

processes of many existing classifiers require multiple passes through the training data

set in order to adequately “train” the classifier to recognize meaningful information

patterns in a training data set. The performance of classifiers is generally evaluated

on the basis of their classification accuracy on unknown examples (also referred to as

its generalization ability13) as well as their classification costs14, both of which vary

greatly among different existing classifiers.

13The generalization ability of a classifier is the ability to correctly assign class labels to unknown
examples which were not used to train the classifier’s model.

14The classification costs of a classifier are related to the computational time and storage costs
associated with assigning a label to an unknown example.
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The performance of classifiers is affected by many issues. For example, when clas-

sifiers are trained on large data sets, their training processes can require very high

computational costs of time and storage (Fuller, Groom, and Jones 1994). Addi-

tionally, large training sets generally lead to large classifier models, which in turn

leads to high classification costs. Another key issue in supervised classification is the

impact of data quality on the performance of classifiers. Real-world data sets have

noise, which misleads classifiers into creating models that are more complex than

required to represent the underlying relationship between the training examples and

their class labels (Dietterich 1995). This issue is known as classifier over-fitting and

it is discussed in more detail in the next section.

The Machine Learning literature reveals that numerous classifiers have been devel-

oped over the past decades. Some well-known and widely employed classifiers are the

C4.5 Decision Trees program developed by Quinlan (1993), Neural networks (Haykin

1999), Support Vector Machines (Cristianini and Taylor 2000), and the k-NN clas-

sifier (Quirino and Kubat 2010), all for which software implementations are freely

available through software packages such as the Weka Data Mining Software Pack-

age (Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten 2009)15. A more recent

strategy is the adoption of ensembles of classifiers, which are classification systems

that combine the output of multiple (heterogeneous or homogeneous) classifiers to

achieve higher predictive power. The concept of classifier ensembles is described in

15Weka is an open-source, Java-based API for the development of Machine Learning and Data
Mining tools
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more detail in Section 3.4, where the Optimal Decision Forests problem (Testbed

Problem 2) is discussed.

The demand for improved supervised classifiers is always high. Numerous real-

world applications such as face recognition, video surveillance, natural language pro-

cessing, and online search engines, have all led to an increasing demand for more

accurate and compact (i.e. having lower classification costs and faster response time)

classifiers. This work addresses this real-world demand through the design and im-

plementation of GAs that are capable of optimizing both the accuracy and size of

popular classifiers described in the Machine Learning literature.

3.1.2 The Impact of Data Noise in Supervised Classification

In supervised classification, data set quality has a major impact on the quality of

the classifiers that are built. Unfortunately, the quality of real-world data sets is fre-

quently damaged by noise from various sources. This makes the removal of noise from

data sets a practical Machine Learning task. The main motivation for removing noise

from data sets prior to inducing classifier models is to achieve higher classification

accuracy. Zhu et al. (2003) claims that classification accuracy cannot be optimized

unless the data set is “cleansed” of noise prior to building a classifier’s model. This

claim has been supported by various works in the GA literature which have shown

that the simultaneous removal of harmful examples and attributes from data sets can

indeed lead to the optimization of both the accuracy and size (i.e. classification costs)

of existing classifiers (Rozsypal and Kubat 2003; Quirino and Kubat 2010; Ishibuchi
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and Nakashima 2000; Kuncheva and Jain 1999; Soryani and Rafat 2006; Hart 1968;

Gates 1972; Tomek 1976).

Data noise emerges from sources such as machine error (i.e. sensor errors during

automatic data collection), as well as from human data entry errors (i.e. entering the

wrong class label for an example). Moreover, data noise affects both the attribute

values describing the examples of a data sets (hereinafter attribute noise), as well

as the labels that categorize the examples into different classes (hereinafter example

noise). Classifiers trained with noisy data sets tend to create overly complex models

that capture not only the relevant underlying patterns in their training data sets, but

also the irrelevant ones. This issue is known as over-fitting (Dietterich 1995). Over-

fitting renders classifiers unable to correctly recognize the category labels of unknown

examples (i.e. those examples without labels and which have unique combinations

of attribute values that were not present in the original training data set). In the

Machine Learning literature, data noise is referred to as one of the major causes of

over-fitting in the task supervised classification (Tan, Steinbach, and Kumar 2005).

Certain classes of classifiers are more prone to over-fitting due to data noise than

others. In Machine Learning, the likelihood of a classifier to build a model that

over-fits a training data set is measured in terms of the classifier’s bias and variance

statistics. The sum of the bias and variance make up the mean squared error (MSE) of

a classifier, or its expected error, computed over all possible training data sets sampled

from an unknown distribution that a given classifier attempts to estimate (Oza and

Tumer 2008; Rokach 2010). The noise resulting from sampling data examples from

an unknown distribution (i.e. corresponding to sensor errors in the real-world) also
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contributes to a classifier’s expected error. However, data noise is generally ignored in

computations of classifier MSE because estimating sampled data noise can be difficult,

unless sufficiently repeated data samples are available to estimate the variance in the

labels of repeated samples. The bias measures the difference between (1) the true

function that generated the possible training data sets and (2) the “average” function

estimated by a classifier over all possible training data sets. In other words, the bias

describes the average error of a classifier and it indicates the ability of a classifier

to adequately fit its training data set. The bias can reveal systematic errors in a

classifier. The variance describes how much the function estimated by a classifier

varies from its “average” function over all possible training data sets (i.e. the spread

of the estimated functions). That is, the variance is an indicator of how much the

structure of a classifier’s model varies from one training data set to another. A

good classifier should have both low bias and low variance in order to achieve good

performance. That is, the classifier should on average be correct (i.e. low bias) while

the structure of its model should remain stable from one training set to another (i.e.

low variance). In practice, however, there is a trade-off between bias and variance in

classifiers. For example, a classifier that adequately fits a training data set (i.e. low

bias) also requires flexibility to fit the training data set (i.e. high variance).

Figure 3.1 illustrates the decomposition of the MSE of a classifier into bias,

variance, and noise. For simplicity of illustration, this example uses a true function

that outputs numerical values instead of class labels (a similar analysis applies for

class labels). The top-left plot of Figure 3.1 shows the true function (solid line) along

with 30 estimated fits. Each of the 30 estimated fits were produced by sampling sets
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of 10 examples (with simulated sampling noise) from the true function and fitting the

sampled example set to a 5th-degree polynomial (hereinafter “polynomial estimator”).

Thus, each of the 30 sampled sets correspond to a different training set having 10

examples. The simulated sampling noise is illustrated in the bottom-right plot of

Figure 3.1; notice how the vertical coordinate value of sampled examples (e.g. the

plus-signs) vary above and below the true function (in the real-world, this variability

is caused by sensor errors). The top-right plot of Figure 3.1 gives the true function

and the “average” function estimated from the 30 estimated fits shown on the top-left

plot. The regions where the true function and the “average” estimated function differ

significantly correspond to regions of high bias (i.e. systematic prediction errors) by

the polynomial estimator; overall, the polynomial estimator exhibit a low bias. The

bottom-left plot of Figure 3.1 gives the the 30 estimated fits and their corresponding

“average” function. The spread of the 30 estimated fits around the “average” function

estimates the variance of the polynomial classifier. Notice how the 30 estimated fits

vary significantly around their average, which indicates that the polynomial estimator

has a high variance. Figure 3.1 gives a clear illustration of the bias/variance trade-

off that is common to classifiers; in this example, the polynomial estimator exhibits

low-bias/high-variance behavior.

Classifiers exhibiting high variance are generally more prone to over-fitting the

noise present in data sets than those with low variance. For example, the C4.5

Decision Trees (Quinlan 1993) program (hereinafter “C4.5”), which is used extensively

in this work as a decision tree builder (see Section 2.2 for a detailed description of

C4.5) is known to be a low-bias/high-variance classifier. C4.5 easily over-fits its
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Figure 3.1: Decomposing the Mean Squared Error (MSE) of a classifier into bias,
variance, and data sampling noise. In this example, the estimator is a 5th-degree
polynomial fitting 30 randomly sampled training sets, each with 10 examples.

induced decision tree models to noise found in data sets (Hall and Smith 1998; Ho

1998a). In C4.5, over-fitting due to data noise is directly manifested in the structure

of the induced decision trees as noisy/irrelevant test patterns that are built into the

model simply to fit the noise in the training data set.

The issue of classifier over-fitting is further aggravated by the presence of irrelevant

attributes in data sets. Irrelevant attributes are those that contribute to increased

data set dimensionality without the addition of meaningful patterns (or information)

to a data set. As a result from the presence of irrelevant attributes in data sets, Ma-
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chine Learning problems become more difficult and more computationally expensive

to solve. For example, as the results in Section 5.2 will demonstrate, irrelevant at-

tributes are often retained in the decision tree models induced by C4.5, consequently

harming the classification accuracy of the induced decision trees. Similarly, in the

case of the 1-NN classifier, irrelevant attributes skew the Euclidean distance com-

putations, harming classification accuracy (Rozsypal and Kubat 2003; Quirino and

Kubat 2010). In essence, the presence of irrelevant attributes “confuse” supervised

classifiers (Wu and Zhang 2004).

In addition, too many irrelevant attributes can greatly increase classification costs.

This issue is more readily apparent in applications of “lazy learners”16 such as the

1-NN classifier investigated in Testbed Problem 1. For example, the classification

costs of the 1-NN classifier increase linearly with respect to increases in the number

of attributes in the training data set.

Among the reasons for the presence of irrelevant attributes in data sets are:

1. Complexity of data collection: The complexity and/or monetary costs associ-

ated with the collection of more relevant attributes (i.e. the cost of collecting

deep ocean seismic soundings in order to better forecast underwater earthquakes

events or the inherent dangers of steering a ship into the eye of a hurricane in

order to collect precious inner-core soundings that can lead to better forecasts

of hurricane intensity and track);

16Lazy learners are leaning methods which wait until a query is made to the classification system
before making any generalizations about the underlying relationship between training examples and
their labels. That is, no function is induced until a query is done to the system.
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2. Data collection errors: Sensor errors occurring during automatic data collection

can yield meaningless data.

3. Quality control: Failure by an expert to control the quality of the attributes

during the design stage of a data collection experiment, i.e. considering “shoe

size” as a relevant feature when making generalizations about an individual’s

car driving risk, and;

4. Unavailability of domain knowledge: The low availability of published domain

knowledge on a new research topic hinders the design of more relevant attributes

for data collection experiments, while at the same time promoting the adoption

of more “experimental” ones.

In summary, the presence of noise is common in real-world data sets and its re-

moval is a practical Machine Learning task. The removal of noise from data prior to

inducing a classifier’s model is an important step toward optimizing the performance

of supervised classifiers: maximizing their classification accuracy while minimizing

classification costs. In this work, data noise removal is the approach taken to build

optimal classifiers for Testbed Problems 1 and 2. To achieve this, two GAs were de-

signed and implemented (the baseline RK-GA0 for Testbed Problem 1 and the baseline

TM-GA0 for Testbed Problem 2) to recognize and discard the harmful examples and

attributes hidden in data sets with the goal of building optimal classifiers.
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3.2 An Overview of Genetic Algorithms (GA)

The Genetic Algorithm (GA) is a popular approach to search and optimization. Over

the past decades, the GA has been applied to hundreds of real-world problems across

various domains of science (Karr and Freeman 1998; Haupt and Haupt 2004; Popescu,

Popescu, and Mastorakis 2009). The GA is part of a group of optimization techniques

known as Evolutionary Algorithms (EA). EAs exhibit three main traits. First, EAs

operate on populations (i.e. groups) of solutions that are generally randomly initial-

ized; the use of multiple solutions allows optimization problems to be solved in a

parallel fashion. Second, the solutions are improved iteratively though the sequen-

tial application of mechanism that mimic Darwinian biological evolutionary process

such as mating, recombination, mutation, and survival of the fittest. This process

is referred to as natural adaptation; better solutions evolve from existing solutions.

Third, EAs are “fitness-driven”. Under this paradigm, each solution in the popula-

tion represents a biological specimen whose genetic code (e.g. chromosomes) encodes

a potential solution to an optimization problem. The quality of the genetic code of

a specimen determines its ability to survive the environment. Moreover, the environ-

ment is determined by a fitness-function (X. Yu 2010) that captures each specimen’s

ability to optimize the objectives of a problems. Thus, EAs approach the task of

optimization by iteratively adapting the specimens in the population toward becom-

ing more “fit” to their environment. This approach is analogous to that of searching

through the space of possible solutions to an optimization problem by generating

new solutions from existing solutions (as opposed to random search) with the goal
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of discovering good solutions capable of optimizing the objectives described by the

fitness-function.

From among the various existing EAs, the GA is the most popular approach.

Its popularity is due to its generality when compared to other EAs. The GA is

a blueprint, or recipe, for writing computer programs capable of solving numerous

search and optimization problems. The initial blueprint of the GA was developed by

Holland (1975), and although it has been greatly extended, the basics still remain the

same. To start, a “population” of potential solutions (i.e. specimens) is maintained,

which is a typical trait of EAs. Each specimen carries one or more “chromosomes”

that encode a potential solution to an optimization problem. Specimens are evalu-

ated to determine their fitness to the environment. This process generally involves

decoding the solutions encoded in the chromosomes of specimens and measuring their

quality according to the user-defined fitness-function. In each succeeding iteration

(also referred to as a “generation”), the GA retains the most fit specimens from among

those of the previous generation and the generated “offspring.” Offsprings are gener-

ated using crossover and mutation operators. Crossover combines the chromosomes

of two specimens (also referred to as a “parent-pair”) to create two new children spec-

imens, echoing reproduction in the natural world. Mutation randomly modifies the

chromosomes of children specimens to introduce new information into the population,

allowing the GA to search in diverse regions of the space of possible solutions to an

optimization problem. Though the initial population is often composed of randomly

generated solutions, and thus performs poorly, performance improves greatly over

subsequent generations.
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The fitness-function and the chromosomal representation of the GA are the two

mechanisms that allows users to map the custom objectives of different optimization

problems into the realm of natural evolutionary adaptation. The fitness-function is

user-defined and it is responsible for providing the GA with feedback regarding the

quality of its discovered solutions. It is through the fitness-function that the user

guides the genetic search. The chromosomal representation allows the user to map

real-world solutions to optimization problems into a symbolic representation that is

suitable for genetic search. Chromosomes have traditionally been represented as bi-

nary (“0” or “1” valued) strings. This representation is very general and offers 2

main advantages. First, it facilitates the representation of real-valued solutions to

optimization problems (e.g. the radius of a circle, the bandwidth of a network route,

the number of tasks in a pipeline, and the accuracy of a classifier)17. Second, the

individual bits of a binary string can also be used to indicate the absence (i.e. “0”) or

presence (i.e. “1”) of objects, which facilitates the representation of solutions as sub-

sets of objects picked from larger sets of objects. For example, this representation was

used in the pioneering work of Kuncheva and Jain (1999), where binary strings were

used to represent subsets of examples and attributes from a data set that optimized

the accuracy of the 1-NN classifier.

The above discussion reveals one of the main advantages of the GA as an opti-

mization tool: the GA is “problem-agnostic”. That is, the GA makes no assumption

about the shape of the fitness-function being optimized. This feature makes the

17When binary strings are used to represent real-valued solutions to an optimization problem, the
precision of the solutions depend on the length of the binary string. However, the GA computational
costs also increase proportionally to the length of the strings.
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GA a suitable tool for solving global optimization problems represented by fitness-

functions having numerous local minima/maxima and even discontinuities. Another

major advantage of the GA is that it can be used to solve multi-objective optimization

problems (Quirino and Kubat 2010) requiring the simultaneous optimization of mul-

tiple conflicting goals. When the GA is applied to such problems, the fitness-function

can be designed to capture the ability of the GA-generated solutions to optimize

all objectives of a problem simultaneously. One disadvantage of the GA is that its

convergence tends to be slow when applied to the optimization of “well-behaved”

fitness-functions. One reason is that the GA does not make use of properties of the

fitness-function, such as gradients, to guide the genetic search. Another reason is

that the stochasticity (i.e. randomness) introduced by the recombination and mu-

tation operators, which enable the GA to search through complex fitness-function

landscapes, also tend to slow down the GA convergence on “well-behaved” functions.

One of the main challenges involved in the design of new GAs is the need to pre-

vent the genetic search from converging prematurely to suboptimal solutions. This

is achieved by maintaining the diversity of information in the GA population. The

issue of premature convergence is inherent from the fact that the genetic search pro-

cess continuously looses information from its initial population of solutions with each

iteration (Shamir, Saad, and Marom 1993). This loss takes place as newly generated

and more “fit” solutions replace older and less “fit” solutions in the population; the

information that was available in the replaced solutions is simply lost. Eventually,

the GA runs out of information to generate new and better solutions and the genetic

search ends. While mechanisms such as mutation attempt to retard the effects of
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information loss by periodically introducing new information into the population, the

effect is only limited. For example, if high mutation rates were used in the GA, the

natural adaptation process would not occur because the generated children specimens

would not resemble their parent specimens. In that case, the genetic search would

be reduced to simple random search. Thus, preventing premature convergence in

the GA requires that all components of the genetic search process (e.g. mating, re-

combination, mutation, and even survival) work together to maintain the diversity of

information in the population in order to promote more efficient and diverse sampling

of the search space of possible solutions to optimization problems.

3.2.1 The GA as a Tool For Multi-Objective Optimization

The GA is an excellent tool for solving multi-objective optimization problems; those

problems having two or more mutually contradicting goals that must be simultane-

ously optimized. The majority of real-world problems are multi-objective in nature.

For example, the two testbed problems (detailed in Sections 3.3 and 3.4) chosen in this

work to evaluate the proposed IM-GA mating strategies are multi-objective optimiza-

tion problems. Solving these testbed problems require the simultaneous optimization

of the accuracy and size of supervised classifiers, which are mutually conflicting goals:

training a classifier with too little data may lead to poor classification accuracy with

low classification costs, however, training a classifier with too much data may improve

accuracy while heavily degrading classification costs.

Researchers have developed two main alternative techniques that allow the GA

to be applied to the optimization of multi-objective problems (Coello 1999; Konak,
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Coit, and Smith 2006): (1) tailoring of the fitness-functions as a weighted sum of

optimization objectives, that combines all criteria into a single formula, and (2) the

use of a different “gender” in the GA for each of the conflicting goals. In particular,

the weighted sum technique has been adopted by various researchers who applied

their own versions of the GA to the 1-NN Tuning Problem, including Kuncheva and

Jain (1999, Ishibuchi and Nakashima (2000, Rozsypal and Kubat (2003, Quirino and

Kubat (2010). One drawback of these two techniques is that the relevance of the

optimization objectives is determined on a somewhat subjective basis. For example,

weight coefficients in the fitness-function are generally tuned manually to reflect the

relevance of different optimization objectives.

A more general approach lies on the principle of Pareto-dominance (Chen, Chen,

and Ho 2005), developed in the field of Multi-objective Evolutionary Algorithms

(MOEA) (Coello 1999)18. In the presence of two or more optimization objectives,

solution X is deemed to be a “Pareto-improvement” over solution Y if X is better than

Y according to at least one optimization objective without being worse than Y along

any other objective (this is also referred to as “Y is then Pareto-dominated by X”).

Moreover, the set of all Pareto non-dominated solutions to a problem is called the

Pareto-optimal set. Identifying the Pareto-optimal of a multi-objective optimization

problem is the main goal of MOEAs, which have the following features (Konak, Coit,

and Smith 2006):

1. MOEAs address optimization problems by identifying competing objective func-

tions;

18Coello (1999) offers a detailed survey on the development of MOEAs.
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2. MOEAs don’t require prioritization or scaling of objectives, which eliminates

the need for weights;

3. MOEAs yield multiple feasible solutions to a problem.

.

One of the first researchers to experiment with the Pareto-dominance framework

in Genetic Algorithms was Schaffer (1985), who employed it in his system VEGA.

VEGA splits the population at each generation into k sub-populations, each with

its own fitness-function. Parents in each sub-population are selected according to

one of these k different fitness-functions. The sub-populations are then merged, and

recombination is used to create a new generation. The technique sometimes led to

premature convergence, but experiments still showed it to outperform random search.

VEGA has been successfully applied to numerous applications (Coello 1999).

Pareto-based fitness-functions are also mentioned in Goldberg’s famous book (Gold-

berg 1989). The algorithm he describes searches for specimens that are Pareto non-

dominated with respect to the rest of the population. These specimens are assigned

the highest “rank” and are exempted from further competition. The process is re-

peated on the rest of the population until all specimens have thus been ranked. In the

experiments reported by Liepins et al. (1990), this approach outperformed VEGA in a

variety of set covering problems. Ritzel et al. (1994) employed Pareto-non-dominating

ranking, selection, and niching schemes in experiments related to cost and reliability

optimization.
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These early approaches inspired numerous other variations. Among these, atten-

tion deserve the Non-dominated Sorting Genetic Algorithm (NSGA) by Srinivas and

Deb (1994), and the Niched Pareto Genetic Algorithm (NPGA) by Coello (1999).

Both are characterized by their combined use of Pareto ranking and fitness sharing

as “niching” mechanisms (to promote diversity in the Pareto fronts). For example,

NSGA starts by finding the first “front” of Pareto non-dominated specimens from

the population and assigning to them the same high “dummy” fitness value. A nor-

malized sharing function is then used to compute for each specimen its distances

from all other specimens in the front. The sum of these distances then defines this

specimen’s “niche count” that measures how much the spatial region surrounding the

specimen is crowded. The specimen’s fitness is computed by dividing its dummy fit-

ness value by its niche count. After the removal of the specimens in the first “front”

from the population, NSGA collects the subsequent Pareto non-dominated front and

assigns a dummy fitness value that is lower than the minimum shared fitness of the

previous front. The process is repeated until the entire population has been classi-

fied. The stochastic selection that follows is based on the final shared fitness: the

first non-dominated front is granted a greater portion of the recombination process.

Non-dominated sorting and “fitness sharing” allow NSGA efficient search in non-

dominated regions, and the sharing mechanism also allows NSGA to attain diverse

Pareto-optimal distributions. NSGA outperformed VEGA and other approaches in

numerous applications (Coello 1999).

More recent MOEAs also adopt the elitistic survival strategy (Bentley 1999), a

technique that speeds up MOEAs and improves their search performance. Represen-
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tative examples include the Strength Pareto Evolutionary Algorithm (Zitzler, Lau-

manns, and Thiele 1999) (SPEA), the Pareto Archived Evolution Strategy (Knowles

and Corne 2000) (PAES), and NSGA-II (Deb, Pratap, Agarwal, and Meyarivan 2002).

In particular, NSGA-II improved over NSGA by adopting a better sorting algorithm to

reduce the computational costs of population ranking and replacing the user-defined

sharing parameter with a “crowding density” measure that eliminated manual param-

eter tuning. NSGA-II also adopted survival-selection elitism to speed up convergence.

Among the numerous sub-classes of MOEAs, the Artificial Immune Systems (AIS)

received attention. It takes inspiration from immunology, where specialized B-cells

in the immune system can adapt to new types of antigens through such biological

processes as cloning and hypermutation (Hart and Timmis 2008). The first attempt to

use AIS in multi-objective optimization was the MISA approach by Coello and Cortes

(2005) that splits the population into two types: 1) antigens (Pareto non-dominated

solutions), and 2) antibodies (Pareto-dominated solutions). The fitness value of each

antibody is obtained from its similarity to a randomly selected antigen. A percentage

of the most fit antibodies are cloned and mutated at a rate inversely proportional to

each clone’s similarity to a randomly selected antigen. MISA’s emulation of immune

system adaptations was found to perform better than NSGA-II and PAES. A more

recent adaptation is NNIA (Gong, Jiao, Du, and Bo 2008). Its unique feature is

its adaptation of NSGA-II’s crowding distance measure into a fitness measure. The

intention is to give higher selection and recombination probability to solutions in less

crowded regions of the search space.
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3.2.2 The Use of Multiple Populations in Genetic Algorithms

The original motivation behind multi-population GA (also known as Parallel or Dis-

tributed GA) was the desire to harness multiple processors in solving large optimiza-

tion problems (Cantu-paz 1997b).19 Early work thus often ignored such issues as the

problem of premature convergence and promotion of diversity (niching) inherent from

the use of multiple populations in the GA, and focused instead on programmatic ways

to exploit massive parallelism. The fact that multi-population approaches may help

improve optimization properties of the GA was discovered later.

Three main types of parallel GAs have been studied. The simplest is the master-

slave GA that uses a single population but distributes the fitness-function calculations

among multiple processors. Another approach, the fine-grained parallel GA, imposes

mating restrictions on vast populations: the population is first spatially structured

and recombination is restricted to small neighborhoods that minimize communica-

tion among processing units; some neighborhoods overlap, allowing interactions. The

third, and most important, approach is the “multi-deme” or “multi-population” GA

that further reduced the communication costs of parallel GAs by evolving multiple

populations with periodic “interbreeding” (migration of individuals among popula-

tions). This is the philosophy behind one of our own techniques. In what follows, we

will use the terms “multi-deme” and “multi-population” interchangeably.

The one practical advantage of the multi-deme architecture is that it is basically

a simple extension of the single-population case—execution of a single-population

GA processes in parallel computers, networked so as to periodically exchange a few

19Cantu-paz (1997b) has an excellent survey on the origins of “multi-population GA”.
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individuals. Extending a single-population GA to a multi-population GA is thus quite

simple. Optimizing its performance is more difficult because of the added decision

factors such as population sizes, migration rates, and migration topologies (where

should migrants be allowed to go?).

One of the first studies of parameter tuning in multi-population GA was conducted

by Grosso (1985). His experimental setup comprised of 5 populations exchanging

individuals at a fixed rate over a “dynamic” topology where all populations were

allowed to communicate. Experiments showed that improvements in average fitness

were faster in smaller parallel populations than in a single large population. Isolating

small populations led to poorer final solutions, and the convergence speed was greatly

affected by migration rate—with low migration rates, the migrant individuals were

not well absorbed into the destination populations.

Various studies found that the performance of multi-population GA is greatly

affected by topology—the restrictions on how the populations are connected for

the purpose of exchanging individuals. A more recent study on “static migration”

topologies (Cantu-paz 1997a) investigated such topologies as uni-directional and bi-

directional rings, the 4×4 toroidal mesh, 4-D hypercubes, and fully connected topolo-

gies, and the configuration of the migratory connections remained unchanged through-

out the experiment. The main observation was that densely connected topologies

converged faster than sparse configurations.

Popular is also the “dynamic topology,” where the migratory connections are not

fixed. Each population is evaluated as a whole according to some criteria, and the

migrant is sent to where it has the greatest potential of “making a difference” (Grosso
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1985). Some studies showed that this accelerated convergence as compared to fixed

migration topologies (Munetomo, Takai, and Sato 1993; Lin, Punch, and Goodman

1994). In particular, Lin et al. (1994) utilized the genotypic distance between two

populations as the migratory criteria, while Munetomo et al. (1993) employed to this

end a measure of the diversity within a population.

The parameter-tuning problem extends to the multi-population algorithms. Some

authors therefore sought to develop algorithms that automatically tune their perfor-

mance. They proposed an approach that inputs the desired number of demes and

the migration topology, and outputs estimates of the required population size and

the number of epochs needed to achieve certain level of quality in the final solu-

tion (Cantu-paz 1999). The algorithm yielded accurate prediction for a handful of

different migration topologies.

The multi-population GA has been successfully applied to numerous multi-objective

applications, including synthesis of integrated circuits, generalized multi-modal func-

tion optimization, and even the feature selection problem. A representative approach

is the BMPGA algorithm (J. Yao 2005), designed to survey multi-modal function

environments. Here, fitness and gradient are derived from the function being opti-

mized. The idea behind this bi-objective evaluation is that the gradient term is a

better criterion for distinguishing between global and local maxima points than the

fitness-function. The population sizes can vary with each generation. An algorithm

was proposed to determine in each generation the correct cluster of each specimen.

The approach has its own way to measure similarity between a specimen and a pop-

ulation. This measure then determines how specimens are to migrate to different
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clusters. Experiments on various complex multi-modal functions favored BMPGA’s

performance over other genetic approaches.

Finally, the MGAFS algorithm from H. Zhu (2006), which employs multi-population

GA principles for feature selection in 1-NN classifiers, randomly creates two sub-

populations, one biased toward chromosomes with prevailing zeroes, and the other

biased toward those with prevailing ones. The fitness-function is defined as the speci-

men’s accuracy, mating is rank based. Migration relies on the best-worst policy, where

the best specimen in a randomly chosen subpopulation replaces the worst specimen

in the other.

Gendered Genetic Algorithms

Another idea, though less common, seen in implementations of the multi-population

GA is to divide the specimens into multiple populations and allow them to mate

according to “gender” (Rukovansky 2009).

Goh et al. (2003) were able to show that sexual selection in the recombination

process can indeed improve the GA performance. In their implementation, they

distinguished exploration and exploitation. The program divides the population into

males and females. All females are allowed to reproduce (exploration), choosing males

by a mechanism that gives preference to males with higher fitness value (exploitation).

Experiments on diverse optimization problems showed that the scheme performed as

well or better than the (fitness-based) roulette wheel, tournament, and rank-based

stochastic selection schemes.
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Also the approach by Velazco and Bullinaria (2003b, Velazco and Bullinaria

(2003a) splits the population into males and females. Males are evaluated by the

fitness-function, and females are evaluated by a combination of age, fertility, and

fitness-function. Each gender has its own mutation rate.

Zhu et al. (2006) used age and gender to address premature convergence. They

gave higher exploratory ability to males through higher mutation rates, while giving

females higher local searching ability through lower mutations rates; mutation rates of

individuals grew with age. Male specimens were only allowed to mate upon reaching

a certain age, the idea being to make the resulting offsprings more stable.

Another version of the male-female duality has been proposed by Raguwanshi

and Kakde (2006). In their system FAS3, females are treated as “niches” of sub-

species in the population. Male specimens of a given species compete to mate with

representatives from female niches. Specimens that do not perform well in a number of

generations are merged with their nearby specimens. FAS3’s performance compared

favorably with asexual as well as gendered methods in a variety of experiments with

uni/multi-modal functions.

Finally, Lis and Eiben (1996) proposed a new way to exploit the Pareto-optimum

search in a multi-sexual GA paradigm they dubbed MSGA. In a domain with multiple

goals, MSGA represented each objective function by its own gender and by its own

sub-population. Each mating partner was selected from a different sub-population

in proportion to the values of their respective fitness-functions. To these parents,

uniform scanning crossover was applied, and each child was assigned the gender of



www.manaraa.com

69

the parent who donated more genes. At each generation, the Pareto non-dominated

solutions of the current and all previous generations were collected.

The subsequent sections report on previous research works that have specifically

applied the GA to the optimization of Testbed Problems 1 and 2.

3.3 What is the 1-NN Tuning Problem?

This section discusses Testbed Problem 1, the 1-NN Tuning problem, a well-known

optimization problem from the field of nearest-neighbor classifiers (k-NN). The 1-NN

Tuning Problem involves the simultaneous selection of optimal subsets of examples

and attributes (i.e. features or predictors) from a data set with the goal of maximizing

the accuracy while minimizing the classification costs of the 1-NN classifier (Rozsypal

and Kubat 2003).

A k-NN classifier keeps a store of “training examples,” each described by a vector

of attribute values and assigned a class label. When presented with a testing example,

x, the k-NN classifier assigns to it the class prevailing among the k training examples

that have the shortest geometric distance from x (Cover and Hart 1967; Fix and

J. L. Hodges 1989). The 1-NN classifier is, thus, a special case k-NN where k = 1.

The training set is known to have a strong effect on the classifier’s behavior. Not only

that classification costs are high if there are too many training examples described

by too many attributes; but noise in the class labels and/or attribute values can

mislead the classifier; and if many of the attributes are unrelated to the output

class (“irrelevant attributes”), the geometric distances are skewed, degrading the

classification performance.



www.manaraa.com

70

These problems can be mitigated. For example, computational costs are re-

duced by indexing mechanisms (Freidman, Bentley, and Finkel 1977; Nene and Na-

yar 1997; Sproull 1991), and the other problems can be addressed by the removal

of noisy/redundant examples (referred to as the process of data editing) and by the

removal of noisy/irrelevant attributes (referred to as the process of feature selection).

Figure 3.2 illustrates the point. On the left is the original set of examples x1, . . . , x6,

described by attributes y1, . . . , y6; on the right is the “reduced” training set obtained

by the removal of three attributes and four examples. The combined application of

data editing and feature selection is called k-NN tuning.
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Figure 3.2: Simultaneous feature selection and data editing (i.e. k-NN tuning).

k-NN tuning is in essence a multi-objective optimization problem that seeks to

maximize classification accuracy while minimizing the number of examples and the

number of attributes (i.e. classification costs). Let N and m, respectively, denote the

number of examples and attributes in a data set. Horowitz et al. (1997) showed that

the task can be cast as a binary optimization problems with N + m boolean decision

variables and an NP-hard search space of 2N+m elements. Exponentially growing

costs being deemed prohibitive, scientists have searched for suboptimal, though ac-

ceptable, solutions. Many powerful techniques have been proposed (Ho, Liu, and Liu
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2002; Llora and Guiu 2003; Kuncheva and Bezdek 1998; Raymer, Punch, Goodman,

Kuhn, and Jain 2000; Hart 1968). This research work builds on the promising results

reported by several authors who have experimented with various versions of the GA.

A survey of these studies is presented next.

3.3.1 Classical Approaches to 1-NN Tuning

The Machine Learning literature has reported numerous techniques for both feature

and example selection, the oldest dating back to the 1960’s.20 The simplicity of these

classical non-GA-based approaches makes them popular even today, and they often

serve as benchmarks in comparisons (Rozsypal and Kubat 2003; Kuncheva ; Quirino

and Kubat 2010). As for example selection, the Wilson’s Edited Nearest-Neighbor

(E-NN) (Wilson 1972) and Hart’s Condensed Nearest-Neighbor (C-NN) (Hart 1968)

are the most famous. These techniques have inspired dozens of other more up-to-

date approaches (Angiulli 2005; Cano, Herrera, and Lozano 2003; Kuncheva and Jain

1999).

As for attribute selection, a representative approach is Sequential Forward Selection

(SFS) (E. Cantu-Paz 2004), a greedy-search approach that starts with an empty set

of attributes and, in successive iterations, adds attributes that appear to be best

at improving the classifier’s accuracy. The opposite approach, Sequential Backward

Selection (SBS), starts with a complete set of attributes, and gradually removes those

that appear to be irrelevant. Another famous approach is the C4.5 Decision Trees

20The work in (Cano, Herrera, and Lozano 2003) presents a good overview of various heuristic
and genetic approaches to example selection.
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program developed by Quinlan (1993), that is known be very good at distinguishing

between relevant and irrelevant attributes in data sets.

3.3.2 1-NN Tuning Solved By Genetic Algorithms

Classical methods usually separated example selection from attribute selection. It

was only in the first attempt to employ the GA, that Kuncheva and Jain (1999)

combined the two tasks. In their GA, each specimen was described by binary chro-

mosomes, where each of the first NE bits represented the presence (“1”) or absence

(“0”) of the corresponding example (total NE examples), and each of the last NA bits

represented the presence (“1”) or absence (“0”) of the corresponding attribute (total

NA attributes). Every chromosome thus defined a 1-NN classifier that used the exam-

ples and attributes labeled with “1.” The fitness-function rested on the classification

performance against training set size.

The success of this approach inspired further research. Thus Ho et al. (2002)

improved the performance of this early solution by the use of the Intelligent Crossover

operator that employs orthogonal arrays and factor analysis to measure and quantify

the contribution of each individual gene to a specimen’s resulting fitness. This is then

used to select for crossover those genes that are likely to contribute more than others.

The approach was shown to outperform its immediate predecessor as well as some

non-genetic techniques.

Ishibuchi and Nakashima (2000) proposed further improvement in their HT-GA.

They experimented with various parameters of the GA, including varying mutation

and fitness-functions. The most notable aspects are the use of different mutation
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rates for the “0” or “1” bits in a chromosome. In their experiments, the resulting

1-NN classifiers outperformed 10 other classification techniques.

Another improvement was proposed by Rozsypal and Kubat (2003) in their RK-

GA, which used a pair of variable-length chromosomes; one for examples, the other

for attributes. This encoding scheme made the chromosomes less costly to handle,

especially with large data sets. Experiments showed that the technique led to smaller

sets of examples and attributes without impairing classification performance. In this

work, an improved version of RK-GA, the baseline RK-GA0, was implemented and

used as the baseline GA for all experiments with Testbed Problem 1.

While the previous approaches relied on the weighted sum approach to combine

the multiple objectives of the 1-NN Tuning problem in their fitness-functions, Chen

et al. (2005) employed the Pareto-improvement approach (detailed in Section 3.2.1)

in their GA, the IMOEA. IMOEA curtailed the subjectivity of the weights in the

weighted sum approach (Coello 1999).

As for practical applications, the approach proposed by Cheatham and Rizki

(2006) used GA-tuned k-NN classifiers for text selection in web search. The fitness-

function combined classification accuracy with the size of the example set. Experi-

ments showed improvement over classical approaches as well over GA-based random

search. The authors also asked whether simultaneous optimization of example and

attribute sets outperformed their sequential optimization. Interestingly, in their par-

ticular domain, simultaneous search did not seem better. Apparently, certain domains

(in this case, the large number of attributes making classes almost linearly separable),

may call for different techniques.
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Some authors sought to demonstrate that GA can bring about improvement over

classical non-genetic approaches even when focusing only on one of the two aspects:

example selection or attribute selection. Sometimes, this makes sense. The attributes

could have been selected by knowledgeable experts, but the examples could each have

a different reliability. Alternatively, examples may be sparse relative to the number

of attributes of which many can be irrelevant.

Focusing on example selection, Gil-Pita and Yao (2007) used crossover operator

and mutation based on clusters of examples (rather than on individual examples),

the idea being that an example’s performance is better captured when it is associated

with other examples surrounding it in the instance space. The clusters are created

in every generation by the k-means algorithm. Crossover mixes clusters of examples,

and mutation is performed only in the example (within the given cluster) that most

improves the average fitness. In experiments on UCI data sets, the approach outper-

formed classical heuristic approaches, the price being the added overhead of k-means

clustering.

Focusing on attribute selection, Soryani and Rafat (2006) used a single-population

GA to reduce the dimensionality of large attribute sets in the field of optical character

recognition in Farsi, a problem characterized by a large number of attributes. As

the fitness-function, they used the k-NN classifier’s accuracy in matching individual

character patterns. The GA-tuned attribute sets yielded better recognition rates at

lower computational costs than earlier OCR techniques.

Similarly, the MGAFS (H. Zhu 2006) introduced a multi-population GA that

improved the k-NN accuracy through attribute selection. Two populations are ran-
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domly initialized, each with a different set of attributes. Population 1 initially selects

more attributes as relevant than population 2. In the course of the GA run, rele-

vant attributes replace less relevant ones, depending on the fitness-function which

measures the k-NN accuracy. In migration, the best specimen of one population re-

places the worst specimen of the other. In experiments, MGAFS outperformed the

single-population GA.

k-NN Tuning as a Binary Optimization Problem

Other approaches formulated k-NN tuning as a binary optimization problem. For

problems of this kind, a few GA techniques have been proposed. The most relevant

are CHC (Eshelman 1991) and PBIL (Cano, Herrera, and Lozano 2003) that have

been employed for attribute selection (S. Chen 1999) and example selection (Cano,

Herrera, and Lozano 2003).

In CHC, the fitness-function is used only in survival decisions; mating partners are

chosen at random. The program measures the Hamming distance between subsequent

pairs, and only those with distance above L/4 (where L is the chromosome length)

are allowed to mate. Recombination is carried out by a mechanism that randomly

exchanges exactly half of the bits in which the two mating chromosomes differ. The

program also has “incest prevention” mechanism that reduces the danger of premature

convergence. CHC does not apply mutation to the generated children. Instead,

when the population converges to a local optimum (which coincides with the mating

threshold reaching 0), the program restarts the population by retaining a copy of

a “template specimen” and generating the remaining specimens by mutating this
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template. When applied to the 1-NN tuning problem, CHC outperformed other

GA-based and non-GA-based techniques (S. Chen 1999; Cano, Herrera, and Lozano

2003).

PBIL (Cano, Herrera, and Lozano 2003) does not generate an actual population

of chromosomes. Instead, it initializes a probability vector whose length is equal to

the number of decision variables, and initializes its values to 0.5 (every bit has the

same chance of being 0 or 1). At each generation, PBIL creates a population by a

probability distribution determined by this vector. The vector is then updated by

being “pushed toward” the best solution and “pushed away” from the worst solution.

Adding small random values then mutates the probability vector. As a result, PBIL

keeps explicit statistics about the search space. These are then used to decide where

to sample next. In the experiments reported by Cano et al. (2003), PBIL compared

favorably with other approaches on example selection.

3.4 What is the Optimal Decision Forests Prob-

lem?

This section discusses Testbed Problem 2, the Optimal Decision Forests problem, a

well-known and complex optimization problem from the field of ensemble learning.

The Optimal Decision Forests problem inherits the optimization objectives of its par-

ent problem, the Optimal Classifier Ensemble problem (Chandra and Yao ). The

Optimal Decision Forest problem consists of the simultaneous optimization of (1) the

example and attribute sets used to induce decision trees (i.e. maximize classification

accuracy while minimizing classification costs) and (2) the grouping of the induced
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decision trees into diverse ensembles, where the classification behavior of the under-

lying classifiers disagree as much as possible (Hyafil and Rivest 1976; Murthy and

Salzberg 1995; Chikalov 2011).

The process of building decision forests requires the use of a decision tree inducer.

The C4.5 Decision Trees program (hereinafter “C4.5”) developed by Quinlan (1993)

is one of the most popular tools used for this purpose (Skurichina and Duin 2002).

C4.5 induces decision tree models by recruiting some of the most relevant attributes

in a training data set. At each tree node, starting at the root node, C.45 recursively

splits the training data set on the most informative attribute. The choice of the

attribute is based on the information gain ratio criterium. Numerical attributes

are handled by discretizing them at each tree node using a simple binary-split. A

user-defined threshold for the minimum number of examples per node controls the

induction process, which ends when the training data set cannot be split any further.

C4.5 is known to induce decision trees having low bias and high variance. This feature

makes it an ideal decision tree builder for use with ensemble generation techniques.

However, the training data set quality is known to have a strong effect on the quality

of the decision trees induced by C4.5. Classification costs are high if there are too

many training examples, and noise in the class labels and/or attribute values, as well

as irrelevant attributes, can mislead the classifier (Hall and Smith 1998; Ho 1998a).

These issues can be mitigated by the removal of harmful examples and noisy/irrelevant

attributes from the training data set prior to inducing a decision tree.

The Optimal Decision Forest problem is in essence a multi-objective optimization

problem; the goal of maximizing the classification accuracy of the individual deci-
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sion trees conflict with the goal of minimizing their overall classification agreement

(the latter implies high classification errors). Let N and m, respectively, denote the

number of examples and attributes in a data set. Also, let S denote the maximum

allowable size of the ensemble of decision trees in a particular problem. The task can

be cast as a binary optimization problems with s · (N +m) boolean decision variables

and an NP-complete search space of 2s·(N+m) elements (Lu, Wu, Zhu, and Bongard

2010; Chandra and Yao ). Compared to 1-NN Tuning problem (Testbed Problem

1), whose search space is in the order of 2N+m, this problem is exponentially more

complex. Notice how the search costs grow exponentially, making brute-force search

for optimal decision forests simply prohibitive. As a result, scientist have searched

for suboptimal, though acceptable, solutions. Many powerful techniques have been

proposed over the years to generate accurate decision forests (Breiman 1996; Freund

and Schapire 1996; Breiman and Schapire 2001; Ho 1998b; Rokach 2008; Hu, Yu, and

Wang 2005). However, more can be done to reduce their classification costs. This

work builds on the promising results reported by several authors who have exper-

imented with various versions of both GA-based and non-GA-based techniques for

decision forests generation. A survey of these techniques is presented next.

3.4.1 The Role of Classifier Bias/Variance Trade-off In En-
semble Generation

The concept of classifier bias/variance trade-off that was discussed in Section 3.1.2

forms the basis for the theory of classifier ensemble generation (Oza and Tumer 2008;

Rokach 2010). Recall from the discussion in Section 3.1.2 that a good classifier should
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exhibit both low bias and low variance in order to achieve good performance. That is,

a classifier should on average be correct (i.e. low bias) while the structure of its model

should remain stable from one training set to another (i.e. low variance). This is an

idealized requirement, because in practice, classifiers do not simultaneously exhibit

both low bias and low variance. Instead, there is always a trade-off between bias and

variance in classifiers. For example, classifiers having low bias (i.e. having low average

classification error) also exhibit high variance because they require flexibility to fit

their models to different training data sets. In contrast, classifiers having high bias

(i.e. having high average classification errors) also exhibit low variance because their

models do not change significantly to fit different training sets, leading to systematic

classification errors.

The primary objective of ensemble generation techniques is to reduce the vari-

ance of classifiers by “averaging” the predictions of many classifiers. This prediction

averaging process is usually achieved by some form of “voting scheme”, where all

classifiers in an ensemble predict a class label and the class attaining the majority of

the votes is considered the “winner”. Voting is a form of averaging, and averaging

reduces variance. This principle was clearly illustrated in the example given in Fig-

ure 3.1 of Section 3.1.2. Compare the top-left and top-right plots of Figure 3.1.

The top-left plot gives the true function being estimated (solid line) along with 30

estimates (dashed lines) produced by fitting of a 5th-degree polynomial (hereinafter

“polynomial estimator”) to 30 data sets randomly sampled from the true function

(the simulated sampling noise is depicted in the bottom-right plot). Similarly, the

top-right plot also shows the true function (solid line), but this time overlayed with
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the “average” function estimated by averaging the 30 estimates of the polynomial

estimator (dashed line). Notice in the top-left plot how the 30 individual estimates

of the polynomial estimator (dashed lines) vary significantly around from the true

function (i.e. high variance). However, the top-right plot reveals that the “average”

of the 30 individual estimates is much more “well-behaved” and also a much closer

estimate of the true function.

The illustration in Figure 3.1 depicts exactly what ensemble generation tech-

niques seek to achieve. An ensemble classification system resulting from the “averag-

ing” (or voting) of multiple slightly different classifiers has a lower variance than that

of of the individual classifiers in the ensemble. In the top-left plot of Figure 3.1,

the differences in prediction behavior among the 30 estimates of the polynomial es-

timator (i.e. its variance) are due to their slightly different training data sets result

from a random data sub-sampling process. The differences in predictive behavior

among the various estimates of the true function is an important property of ensem-

ble systems. For example, the 30 different estimates must be able to “complement”

each others’ predictive biases in order for their “average” function to improve over

any single estimate. This key property is known as “ensemble diversity”. Further-

more, ensemble classification systems inherit the bias of their underlying classifiers,

as illustrated in the top-right plot of Figure 3.1. Thus, if an ensemble is generated

from a classifier having low bias and high variance (i.e. such as the decision trees

induced by the C4.5 Decision Trees program), the resulting ensemble classification

systems will exhibit both low bias, the inherited property, as well as low variance,

which is attained through the voting (or “averaging”) process. This explains why
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C4.5 is one of the classifiers most frequently used for ensemble generation (Skurichina

and Duin 2002). In summary, ensemble classification systems exhibit the ideal prop-

erties of a good classifier; both low bias and low variance. The model search space

of ensemble classification systems encompasses that of single classifiers and beyond!

Ensemble classification systems are capable of inducing hypotheses about the under-

lying properties of unknown statistical process that single classifiers cannot possibly

achieve (Zhou 2009; Oza and Tumer 2008).

Bagging (Breiman 1996), AdaBoost (Freund and Schapire 1996), Random Sub-

space (Ho 1998b), and Random Forests (Breiman and Schapire 2001) are classical

ensemble generation techniques built upon the principle of variance reduction de-

scribed above. These techniques are both powerful and simple to implement, which

make them popular tools for use in numerous applications and also as benchmarks in

comparisons. These classical techniques, and others, are discussed in the subsequent

sections.

3.4.2 The Role of Classifier Diversity in Ensemble Genera-

tion

The key to the success of ensemble generation techniques is the ability to build

both accurate and diverse classifiers (Parvin, Alizadeh, and Bidgoli 2009; Lu, Wu,

Zhu, and Bongard 2010). Diversity is the ability of the classifiers making up an

ensemble to “complement” each other’s errors in order to achieve higher predictive

power (Kuncheva 2003). When applied to classification problems, this means that

the classifiers making up an ensemble should have orthogonal (or independent) errors
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with respect to each other. As discussed in Section 3.4, accuracy and diversity are

conflicting optimization objectives that ensemble generation techniques must optimize

simultaneously to create good ensembles.

Introducing diversity into ensembles is not a straight-forward process, the main

reason being that the concept of ensemble diversity itself is not well-defined in the Ma-

chine Learning literature (Kuncheva and Whitaker 2003). Over the years, researchers

have developed a few different approaches to introduce diversity into ensembles of

classifiers. The earliest approaches to ensemble generation introduced diversity into

their ensembles by injecting randomness into the choice of input parameters used

to build the underlying classifiers (Gunter and Bunke 2004). For example, in Bag-

ging (Breiman 1996) and AdaBoost (Freund and Schapire 1996), different classifiers

are generated by randomly resampling (with replacement) subsets of examples from

the original training set. In contrast, in the Random Subspace (Ho 1998b) and Ran-

dom Forests (Breiman and Schapire 2001) techniques, the choice of the attributes

used to build the classifiers are randomized instead. These technique proved to be

very efficient in creating accurate ensembles over single classifiers.

Another common approach to introducing diversity in classifier ensembles is called

“ensemble pruning”. Ensemble pruning is a process based on an overproduced-and-

select paradigm in which a pool of classifiers is first built using an existing ensemble

generation method (i.e. Bagging or AdaBoost) and then a subset of the most accurate

and diverse built classifiers are selected to create and ensemble (Kuncheva 2003;

Rokach 2010). Ensemble pruning is an optimization problem, and it can be seen as a
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simplified, or one-sided, version of the Optimal Classifier Ensemble problem described

in Section 3.4.

In ensemble pruning methods, the classifier selection process is generally guided by

a user-defined ensemble diversity measure. Over the years, researchers have proposed

various diversity measures to quantify ensemble diversity. Existing measures are gen-

erally sub-divided into two groups: 1) pairwise measures, and 2) ensemble-based

measures (Kuncheva and Whitaker 2003). Pairwise measures rely on the computa-

tion of some distance metric between the pairs of classifiers making up an ensemble.

The results are then averaged over the total number of possible classifier pairs. The

plain-disagreement and double-fault measures are representative examples of pairwise

diversity measures. Given a pair of classifiers, the plain-disagreement (also known

as the “average pairwise Hamming distance”) measures the probability of two clas-

sifiers making different predictions on the same example. The double-fault measures

the probability of both classifiers being incorrect. The disagreement measure is max-

imized, while the double-fault measure is minimized, during the ensemble pruning

process. Other popular pairwise measures include the Q-statistics and the correlation

coefficient (Tsymbal, Pechenizkiy, and Cunningham” 2005). As for ensemble-based

diversity measures, which use metrics based on the distribution of votes to different

classes on a per instance basis, the most popular measures are the kappa and the

entropy measures (Kuncheva and Whitaker 2003; Kuncheva 2003).



www.manaraa.com

84

3.4.3 Classical Approaches to Optimal Decision Forests

Approaches to ensemble generation date back to the 1960’s, with numerous ap-

proaches having been developed over the years. Bagging (Breiman 1996), AdaBoost (Fre-

und and Schapire 1996), and the Random Subspace (Ho 1998b) methods are amongst

the most representative classical techniques. A major advantage of these techniques

is that they are “classifier agnostic” (i.e. they work with all classifiers), although they

were primarily built for use with low-bias/high-variance classifiers such as decision

trees (Skurichina and Duin 2002). A major drawback of classical ensemble genera-

tion techniques is that the gains attained in classification accuracy come at the cost of

lower interpretability of the results (Breiman 1996). This occurs because the classical

techniques require large ensemble sizes to work adequately, making results very hard

to interpret.

A common trait among classical techniques is in the way they introduce diversity

into their ensembles. Classical techniques build classifiers by randomly resampling

from their training pool of input parameters (Gunter and Bunke 2004). For example,

some classical techniques build classifiers using randomly resampled examples from a

training data set. Other techniques retain all examples but randomly resample the

attributes from the training set. In either case, implementing randomized sampling for

either examples or attributes is an easy task, which has contributed to the popularity

of classical ensemble generation techniques.

Some of the classical techniques preferred to introduce diversity into their en-

sembles by injecting randomness into the example selection process. For example,
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given a training data set with NET examples and a user-defined ensemble size k,

Bagging (Breiman 1996) builds an ensemble of k classifiers by randomly resampling

(with replacement) k new bootstrap training sets (each having NET examples) from

the original training set. On average, each of the k bootstrap training sets will con-

tain approximately 0.63 · NET unique examples, although they each contain a total

of NET examples. Bagging then subsequently builds a different classifier using each

of the k bootstrap training sets. A simple majority voting scheme is used to combine

the predictions of the k generated classifiers. Bagging is known to work well with

classifiers having high variance.

AdaBoost (Freund and Schapire 1996) also promotes ensemble diversity through

the injection of randomness into the example selection process. However, there are

two major differences between AdaBoost and Bagging. First, AdaBoost builds each of

its k classifiers sequentially using a weighted random resampling (with replacement)

scheme. In the first iteration, every training example is assigned an equal selection

probability of 1
NET

. In subsequent iterations, examples that were misclassified by

the classifier generated in the previous iteration have their weights increased, while

all other examples have their weights decreased. The process is repeated k times

to generate k classifiers. The second difference is that AdaBoost uses a weighted

voting scheme, in which the class that attains the maximum weighted vote over the k

classifiers is considered the “winner”. The classification weight of a generated classifier

is proportional to its accuracy on the weighted training data set presented to it. This

is a contrast to Bagging’s simple majority voting scheme. AdaBoost outperformed

Bagging in experiments with UCI data sets and various different classifiers.
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Other classical techniques preferred to generate diversity in ensembles by injecting

randomness into the feature selection process. The Random Subspace (Ho 1998b)

technique is a representative approach that is also referred to as “attribute bagging”.

The concept is simple. To generate an ensemble of k classifiers, the user defines the

number Na of attributes to be used to build each classifier. At each of the k iterations,

Random Subspace randomly selects a subset of Na attributes from among the original

ones to build a classifier. In contrast to bagging and AdaBoost, all examples are used

to build the classifiers in each iteration. The predictions of the k generated classifiers

are combined through majority voting, or in the particular case of decision trees,

by averaging the conditional probability of each class at the leaves. Decision forests

generated by Random Subspace outperformed those generated by both Bagging and

AdaBoost.

In addition, various classical techniques were designed specifically for the task of

inducing decision forests. Random Forests (Breiman and Schapire 2001) is a repre-

sentative approach that builds upon ideas from both Bagging and Random Subspace.

To generate an ensemble of k classifiers from NET training examples, the user defines

how many Na attributes will determine the decision at each node of the generated de-

cision trees. At each of the k iterations, Random Forests creates a bootstrap training

set with NET examples by resampling (with replacement) from the original training

set. An unpruned decision tree is then induced from the bootstrap training set. At

each node of the induced decision tree, Na attributes are randomly chosen and the

best split is determined from among the chosen attributes. A simple majority voting
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scheme is used to combine the predictions of the k generated decision trees. Random

Forests outperformed AdaBoost in experiments with UCI data sets.

A more recent technique is Rotation Forest (Rodriguez, Kuncheva, and Alonso

2006), which relies on Principal Component Analysis (PCA) to generate diverse fea-

ture spaces from a training set in order to train diverse decision trees. Similar to

Bagging, Rotation Forests trains each classifier independently by resampling (with

replacement) k new bootstrap training sets from the original training set. For each

of the k classifiers, Rotation Forest randomly splits the feature space into s subsets.

PCA is the applied independently to each of the s subsets. The resulting principal

components are regrouped to form a new feature space, the corresponding bootstrap

training set is projected into the new feature space, and a decision tree is built. The

advantage of this approach is that different subsets of the original feature space will

lead to different projected feature spaces, thus promising more diverse ensembles. Ro-

tation Forest outperformed Bagging, AdaBoost, and Random Forests in experiments

with UCI data sets.

3.4.4 Optimal Decision Forests Solved By Genetic Algorithms

Various research works reveal that GA-generated decision forests work better than

existing classical techniques for ensemble generation (Rokach 2008; Hu, Yu, and Wang

2005; Podgorelec and Kokol 2001). While classical techniques for ensemble generation

generally rely on single or limited number of hypotheses to generate classifiers, the

GA is able to search through vast search spaces of classifier configurations to discover

optimal ones. This is a major advantage of GA-based techniques over classical ones.
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However, a survey of the Machine Learning literature reveals that very little at-

tention has been given to the idea of inducing optimal decision forests; being simulta-

neously accurate and compact. Instead, the trend among existing GA-based research

works has been to either (1) optimize individual decision trees and then group the

resulting trees into an ensemble, or (2) induce a set of decision trees using an exist-

ing technique and then apply the GA to to select an optimal subset that maximizes

ensemble accuracy. In addition, existing works focusing on the optimization of de-

cision trees usually do so through GA-based feature selection, ignoring the presence

of noisy/redundant examples in data sets. This hinders the optimization of the de-

cision tree classifiers, which are sensitive to this type of data noise, as discussed in

Section 3.1.2. The trends found in current research works indicate that much more

remains to be done to optimize the performance of decision forest classifiers.

The ensemble generation technique proposed by Rokach (2008) provides an ex-

ample of GA-based feature selection used in the generation of accurate and diverse

decision trees. The GA is used to discover multiple disjoint “reducts” (i.e. compact

and informative subsets of training attributes) that are used to train the decision trees

using all examples in the training set. Specimens in the GA are represented by strings

of integers whose lengths are equal to the number of attributes in the training set.

Each element in a string corresponded to a training attribute and the value in the each

element corresponds to the index of a “reduct” that the corresponding attribute is to

be placed into. The fitness-function rests on the accuracy of the decision tree clas-

sifiers induced by the GA-generated reducts. The ensemble size is automatically set

by the final number of GA-generated disjoint reducts. The technique outperformed
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AdaBoost, C4.5, Naive Bayes, and other classical ensemble generation techniques on

various experiments with UCI data sets.

Similarly, the technique proposed by Podgorelec and Kokol (2001) also uses the

GA to build optimal decision trees, but the algorithm randomly creates tree structures

of a user-specified depth and lets the GA optimize the choice of attributes used at each

test node. The fitness-function weighted classifier accuracy against the importance of

the chose decision nodes. The technique then combines the GA-generated trees into

a decision forest. The experimental results revealed that the GA-generated decision

forest outperformed the single decision tree.

The technique proposed by Hu et al. (2005) is an example of GA-based classifier

subset selection. This technique uses an external reducer to extract a user-specified

number of “reducts” from a data set. The reducts are used to train decision trees and

the GA is used to select a subset of the trees that maximizes ensemble classification

accuracy. In particular, the technique adopted binary strings to represent specimens.

Each bit indicated the presence or absence of a classifier in the GA-generated ensem-

ble. The fitness of each solution rested on the classification accuracy of the induced

decision forest. The technique was found to outperform other classical reduct-based

ensemble generation techniques.
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CHAPTER 4

Speeding Up the Genetic Search

This chapter presents the five (5) novel “instinct-based” mating strategies designed

to optimize genetic search. These strategies are designed to speed up the GA without

impacting the quality of the generated solutions, while requiring minimal additional

computational overhead. The proposed mating strategies are sophisticated mating

strategies based on the Darwinian evolutionary principle of “opposites attract” that

is commonly observed in nature. A total of five (5) different “instinct-based” mating

strategies are presented; four of them as single-population21 GA mating strategies

and one as a multi-population22 GA mating strategy.

Given the nature of this work, an intuitive questions arises: why seek to improve

upon the conventional mating strategy if it already works? The conventional mating

strategy, which has been used for decades in implementations of the GA, is known to

contribute to premature convergence in genetic search. First, the conventional mat-

ing strategy is based on random selection of partners using probability distributions

21The single-population GA uses one single population of specimens, or a single pool of potential
solutions, to solve an optimization problem.

22The multi-population GA uses multiple populations of specimens, or multiple pools of potential
solutions, to solve an optimization problem. Generally, different populations evolve independently
with periodic interbreeding through exchange of specimens among the population.

90



www.manaraa.com

91

implied by the fitness-function,23, which means that individual specimens in the pop-

ulation have no choice on their selection of mating partners. Second, the conventional

mating strategy tends to allow the most “fit” specimens in the population to “mate”

more often. This eventually leads the entire population to be overrun by some highly-

fit specimens. At this stage the the genetic search ends, unable to further improve

the quality of the solutions. The “instinct-based” mating strategies proposed

in this work improve over the conventional mating strategy by “endow-

ing” specimens with “mating instincts” that promote a more diverse

pairing of mating partners and helps mitigate the issues of premature

convergence in genetic search . The proposed “instinct-based” mating strategies

are collectively referred to by the acronym IM-GA, which stands for Instinct-Based

Mating in Genetic Algorithms.

The organization of this chapter is a follows. First, Section 4.1 introduces the

theory behind IM-GA — the inherent issues with the conventional mating strategy

are discussed, followed by a description of how IM-GA was designed to effectively deal

with those issues. Next, a discussion follows on the choice of testbed problems. This

is a key topic because the definition of what constitutes “useful” mating instincts

in IM-GA is problem-dependent. Following the discussion of the choice of testbed

problems is the definition of required measures used to implement the actual “mating

instincts” in the IM-GA mating strategies. Next, Section 4.2 describes the IM-GA

Strategies 1 through 4, the single-population GA mating strategies. Then, IM-GA

multi-population GA mating Strategy 5 is described in detail in its own Section 4.3.

23See Section 3.2 for a detailed overview of the GA
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Following that, Section 4.4 discusses Testbed Problem 1, the 1-NN Tuning problem,

and details how the IM-GA Strategies 1 through 5 are implemented in the GA mating

process to optimize genetic search in this problem. Finally, Section 4.5 describes

Testbed Problem 2, the Optimal Decision Forests problem, and details how the IM-

GA Strategies 1 through 5 are implemented in the GA mating process to optimize

genetic search in this second problem. The goal is to demonstrate that the new

IM-GA mating strategies improve genetic search in different problems.

4.1 Instinct-Based Mating in Genetic Algorithms

(IM-GA)

The five IM-GA “instinct-based” mating strategies presented in this chapter were

designed is to promote faster adaptation (or improvement) of solutions in the GA

population in every iteration of the genetic search process, without impacting the

long-term quality of the solutions.

As was discussed in the Introduction, improving genetic search requires mitigat-

ing the issue of information loss rate that is inherent in the genetic search process.

Optimizing the mating process is a key step toward mitigating this issue. That is

because mating is the process that determines how the available information in the

GA population is used to generate new solutions. Unfortunately, the tendency of the

conventional mating strategy is to exacerbate the issue of information loss rate by

promoting highly-fit specimens to eventually overrun the GA population after mul-

tiple iterations of the genetic search process. In the conventional mating strategy,

specimens have no choice on the selection of their mates. They are simply paired
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randomly. This is not always true in nature. In nature, the principle of “oppo-

sites attract” is common to many species, where specimens will tend to mate with

those that “complement” them on their own abilities to survive and generate better

offsprings (ScienceDaily 2009; Shamir, Saad, and Marom 1993).

The proposed IM-GA “instinct-based” mating strategies improve over the conven-

tional mating strategy by implementing the natural principle of “opposites-attract”

in the GA mating process. The IM-GA mating strategies “endow” specimens with

“mating-instincts” that guide them in their selection of partners that “complement”

them on their own abilities to optimize some problem dependent optimization crite-

ria. This promotes the pairing of specimens having more diverse information content,

consequently improving the utilization of the information available in the GA popu-

lation for recombination, and leading the GA to more efficiently and diversely sample

the search space of possible solutions to optimization problems.

Since the definition of “mating-instincts” is problem-dependent, this section re-

views the choice of testbed problems adopted in this work to evaluate the proposed

ideas. After defining the “mating-instincts” according to the choice of testbed prob-

lems, the subsequent sections will then show how these “mating-instincts” were used

to implement the five proposed IM-GA mating strategies.

4.1.1 Defining Useful Instincts

As was discussed in Section 1.2, one of the main challenges involved in applying

“instinct-based” mating in Genetic Algorithms is that of defining what constitutes

“useful” mating instincts in different problem domains. In contrast, this is not an
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issue in applications of the conventional mating strategy, where specimens do not

a have a choice in the selection of their mating partners. Defining “useful” mating

instincts is a key issue in IM-GA because of two main reasons: 1) the definition will

vary greatly from one problem domain to another, and 2) because the performance

of the GA is sensitive to the choice of mating instincts.

In particular, the domain of supervised classification offers numerous optimization

problems under which useful “mating instincts” can be very intuitively defined. Many

of the optimization problems in the domain of supervised classification involve opti-

mizing the performance of classifiers (i.e. improving classification accuracy, building

more compact models to reduce training and/or classification costs, automatically

identifying the most relevant attributes and examples in data sets to build better

classifiers, etc). In applications of the GA to such problems, the general paradigm is

to let the specimens in the GA population represent different classifiers, where each

classifier constitutes a possible “optimal” solution to the problem under investiga-

tion (Rozsypal and Kubat 2003; Quirino and Kubat 2010; Ishibuchi and Nakashima

2000; Kuncheva and Jain 1999; Soryani and Rafat 2006). Furthermore, each of the

classifiers are trained with a different set of input parameters, i.e. different train-

ing sets and/or program argument choices. These input parameters are “encoded”

in the one or more chromosomes of the corresponding specimen (see Section 3.2 for

an overview of the GA). That is, each specimen in the GA population encodes the

parameters needed to build a unique classifier in its chromosomes. Under this com-

monly adopted paradigm, it is simple to define as a useful “mating instinct” the

ability of a classifier (or specimen in the GA population) to “complement” another
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classifier’s errors. In other words, in applications of the GA to problems in the do-

main of supervised classification, there is a natural connection between the use of

“mating instincts” in the GA mating process and the optimization of classifiers. In

this case, a “useful” mating instinct can be defined as the tendency of

each specimen (or classifier) to mate with those specimens that “err” on

different examples.

What the above discussion establishes is that problems in the domain of supervised

classification are suitable testbeds under which “instinct-based” mating strategies can

be developed and their impact on the performance of the GA can be evaluated. Hence,

due to this natural connection, this research borrowed two well-known problems from

the domain of supervised classification to test the ability of the proposed IM-GA

mating strategies to optimize the GA. These testbed problems are: 1) the 1-NN

Tuning problem (hereinafter “Testbed Problem 1”), and 2) the Optimal Decision

Forests problem (hereinafter “Testbed Problem 2”).

Now, having discussed both the problem domain dependence of the choice of

“mating instincts” and also the choice of testbed problems used to evaluate the IM-

GA mating strategies, let us focus on the clarification of two important consequent

questions:

1. What is the role played by these “mating instincts” in the selection of mating

partners in the GA?

2. How does IM-GA actually implement the “mating instincts” in the GA mating

process?
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To answer these questions, first recall from the overview presented in Section 3.2

that the GA mating process consists of selecting pairs of specimens (hereinafter “par-

ents”) which are then recombined24 to generate new specimens (hereinafter “chil-

dren”). In the conventional mating strategy, both parents (hereinafter “first parent”

and “second parent” in each parent pair) in each parent pair are selected randomly

based on fitness (i.e. no partner selection choice is allowed). In contrast, in IM-GA,

only the “first parent” of each parent pair is selected based on fitness (either randomly

or as the top fit specimens in the population). Then, the “second parent” in each

parent pair is selected by “endowing” the chosen “first parent” specimens in each pair

with “mating instincts” that guide them in their choice of a mate.

These “mating instincts” are essentially pairwise measures computed between the

chosen “first parent” in each parent pair and the remaining specimens in the GA

population. For example, let the number of specimens in the GA population (the

“population size”) be NP for an arbitrary optimization problem. For each chosen

“first parent” in each parent pair, a total of NP − 1 pairwise values of some chosen

measure are computed between the “first parent” and all remaining specimens in the

GA population. The resulting NP − 1 measures are transformed into a probability

distribution which is then used to randomly select the “second parent” in each pair.

In order for this type of mating partner selection scheme to effectively emulate

the natural principle of “opposites attract” in the GA mating process, pairwise mea-

sures chosen to define “mating instincts” in IM-GA must be carefully formulated to

24Recombination in the GA is the process of generating new solutions to a problem from existing
solutions. This consists of exchanging chromosomal information between pairs of specimens (parents)
to generate new specimens (children).
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adequately capture, numerically, the ability of each specimen in the GA population

to “complement” every other specimen. In addition, recall that the choice of “mating

instincts” is problem domain dependent. Therefore, in this work, any chosen pairwise

measure must be somehow derived from criteria related to the domain of supervised

classification (recall that Testbed Problems 1 and 2 are optimization problems from

the domain of supervised classification). The measures should consider one or more

of the following:

1. Criterium 1: The structural properties of the input data used to build a classifier

(i.e. choice of examples and or attributes used to build a model);

2. Criterium 2: The classification behavior of a classifier (i.e. the properties of the

classification error on a specific data set), and;

3. Criterium 3: The structural properties of the custom model built by a classifiers.

Here, there are numerous choices available for such custom, problem domain de-

pendent, pairwise “mating instinct” measures. In this work, a total of four gener-

alized pairwise measures were adopted. These chosen pairwise measures were de-

rived from both Criterium 1 and 2 described above. Measures based on Criterium

3 were deliberately avoided in this work because this criterium entails the deriva-

tion of measures that are “classifier-dependent” as opposed to more general measures

that are“problem-domain-dependent” (i.e. useful in numerous optimization problems

across the domain of supervised classification). The four chosen pairwise measures

are as follows (their detailed definitions are presented in the subsequent sections):
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1. Mating Instinct 1: The Hamming distance25 measure between the error vectors

of a pair of classifiers;

2. Mating Instinct 2: The novel “Correct-My-Wrongs” distance measure, also de-

rived from the error vectors of a pair of classifiers;

3. Mating Instinct 3: The Hamming distance between the sets of attributes re-

tained by a pair of classifiers (i.e. the size of the symmetric difference between

the sets of attributes retained by the pair of classifiers), and;

4. Mating Instinct 4: The Hamming distance between the sets of examples retained

by a pair of classifiers (i.e. the size of the symmetric difference between the sets

of examples retained by the pair of classifiers).

Notice how this particular choice of measures is not tied to any single optimization

problem. Instead, they are sufficiently general to be used in numerous optimization

problems across the domain of supervised classification. The analogy associated with

this particular choice of pairwise measures is that of observing the input (i.e. training

set properties) and response (i.e. classification error) of a classifier and using that

information to make more “informed” decisions about the optimal selection of mating

partners in the GA. Furthermore, notice that this choice of pairwise measures avoids

any dependence on the diverse/custom structural properties of different classifiers

(e.g. the 1-NN classifier, decision trees, and the SVM classifiers are all described

by their own custom model structures). Instead, the chosen measures allow the GA

25The Hamming distance between a pair of binary (“0” or “1” valued) strings is the number of
corresponding positions in both strings that differ.
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to virtually treat any classifier being optimized as a “black box” (i.e. only observa-

tions about the properties of a classifier’s input and response variables are required).

These feature simplify the implementation of the proposed IM-GA mating strategies

into the GA mating process because no knowledge about a classifier’s internal model

structure is required. The proposed IM-GA mating strategies are thus ca-

pable of adapting to numerous optimization problems across the domain

of supervised classification.

Regarding the use of the four chosen pairwise measures in the five proposed IM-

GA mating strategies, each of the four single-population IM-GA strategies adopts one

of the pairwise measures as their principal “mating instinct.” In contrast, the fifth

proposed strategy, the multi-population IM-GA strategy, adopts three measures and

employs each of them as the principal “mating instinct” of a sub-population of spec-

imens. This is a key difference between the single versus multi-population

implementation of the IM-GA “instinct-based” mating strategies. In the

single-population case, specimens are “endowed” with the same “mating instinct,”

representing the optimization of a single objective. In contrast, that is not a re-

striction in the multi-population case, where the optimization of multiple objectives

through the mating process can be simultaneously pursued by “endowing” specimens

in each sub-population with a different “mating instinct.”

The following sections detail how the four chosen “mating instinct” pairwise mea-

sures are actually computed from pairs of specimens in the GA population. The

discussion starts with the definition of the classification “error vector” of a classi-

fier, which is a key instrument in the derivation of Mating Instinct 1 and 2 listed
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above. The detailed derivation of the four “mating instinct” pairwise measures are

then presented.

4.1.2 The Classification Error Vector

Used in Measure 1 (Hamming distance) and Measure 2 (Correct-My-Wrongs), the

classification error vector (hereinafter “error vector”), describes the ability of a clas-

sifier to correctly assign category labels to every example in a validation set. During

the GA run, the training set itself is used as the validation set needed to compute

the error vectors of the GA-generated classifiers. Each specimen in the GA popula-

tion represents a different classifier, or a different potential solution. That is because

each specimen contains one or more chromosomes that encode a unique set of input

parameters used to build a unique classifier. Because of this one-to-one relationship

between a specimen and its corresponding classifier, the term “classifier” and “spec-

imen” will be used interchangeably hereinafter. Now, let us assume that a training

set has NET examples. For each specimen in the GA population, a binary (“0” or

“1” valued) error vector having length NET is created. Each element in a particular

specimen’s error vector corresponds to an example in the training set. When a train-

ing set example is misclassified by a given specimen (i.e. by the classifier built from

its chromosomes), a value of “1” is assigned to that example’s corresponding location

in the specimen’s error vector. Conversely, if the given example is correctly classified,

a value of “0” is assigned. Figure 4.1 illustrates the error vector of an arbitrary

specimen. Notice from this illustration that the first, third, and last elements in the

error vector are set to “1.” This indicates that the corresponding examples were
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misclassified by the specimen (i.e. misclassified by the unique classifier built from the

data in its chromosomes):

1 2 3 Nt...
1 0 1 1

Figure 4.1: Sample binary error vector (“0” or “1” valued) of a classifier.

The computational costs of time and storage associated with the computation of

classifier error vectors are negligible in both Testbed Problems 1 and 2. First, com-

putation of the error vectors do not require any additional training set evaluations

beyond those that are already commonly done for fitness evaluation purposes. This

is because the classification accuracy is an optimization objective in the two testbed

problems, and thus, the GA-generated classifiers are already evaluated on the training

data set for the purpose of fitness evaluation. Second, computing the error vectors

require only computationally cheap boolean operations to compare the class labels

assigned to the training set examples by a GA-generated classifier versus the training

set examples’ true class labels. As discussed in Sections 4.4.3 and 4.4.5 for Testbed

Problem 1, and Sections 4.5.2 and 4.5.4 for Testbed Problem 2, the error vector com-

putational costs are negligible when compared to the costs of inducing and evaluating

the GA-generated 1-NN and decision trees classifiers.
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4.1.3 Proposed Mating Instinct 1 - The Hamming Distance
Between Error Vectors

The first “mating instinct” (Mating Instinct 1) is designed using the Hamming dis-

tance between error vector pairs. Figure 4.2 illustrates the Hamming distance com-

putation between a pair of arbitrary error vectors A and B:

Figure 4.2: Sample Hamming distance calculation for a pair of error vectors A and
B.

Then, once the error vectors are computed for all specimens in the GA population,

a symmetric distance matrix is created using the computed Hamming distance values

between every pair of error vectors. Let the number of specimens in the GA population

for an arbitrary optimization problem be NP . Then, the generated NP ×NP distance

matrix is referred to as the Complementary Distance Matrix. In this matrix, the

field in the i-th row and j-th column gives the Hamming distance between the error

vectors of the i-th and j-th specimens, respectively. This indicates how well the two

specimens “complement” each other in terms of their classification errors, a criterium

that naturally fulfills the principle of “opposites attract” that inspired this research.

The matrix is symmetrical, with zeroed out main diagonal.26 Figure 4.3 gives an

example of a distance matrix for an imaginary population of NP = 6 specimens and

26This is because the Hamming distance computation is symmetric.
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is populated with arbitrary numbers. The illustration shows the general form of a

distance matrix: symmetric and with zeroed out diagonal:

Figure 4.3: Sample Complementary Distance Matrix for six specimens.

4.1.4 Proposed Mating Instinct 2 - The “Correct-My-Wrongs”

Distance Between Error Vectors

The second “mating instinct” (Mating Instinct 2) was designed using a novel distance

metric between error vectors pairs. This novel measure is called the “Correct-My-

Wrongs” (CMW ) distance and was developed specifically for the purposes of this

research. Figure 4.4 illustrates the CMW measure computation for a given a pair

of error vectors, A and B. Note how error vector B “corrects” two of error vector A’s

five errors (represented as the solid rectangles), while error vector A “corrects” only

one of error vector B’s four errors (represented as the dashed rectangle).

Again, let the GA population size be NP specimens in an arbitrary optimization

problem. Similar to Mating Instinct 1, the CMW distance values between every NP

pairs of error vectors (corresponding to NP possible pairs of specimens) can also be
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represented as an NP × NP matrix. This matrix is referred to as the Supplementary

Distance Matrix. In this matrix, the field in the i-th row and j-th column contains

the number of entries for which the i-th specimen’s error vector is “1” and the j-th

specimen’s error vector entries are “0.” The distance matrix is asymmetric, with

the i-th row measuring the potential of each of the NP specimen in the population

to correct the i-th specimen’s classification errors. As in Mating Instinct 1, this

criterium also naturally fulfills the principle of “opposites attract” that inspired this

research because it tends to pair a specimen with others that can “supplement” its

classification errors.

Figure 4.4: Sample CMW distance calculation for a pair of error vectors A and B.

4.1.5 Proposed Mating Instinct 3 - The Hamming Distance

Between Attribute Sets

Mating Instincts 3 and 4 were developed for conjoint use in the proposed IM-GA

multi-population mating strategy detailed in Section 4.3. In contrast to Mating In-

stincts 1 and 2, which rely on the classification error of specimens (or classifiers) in the

GA population, Mating Instincts 3 and 4 use pairwise metrics based on properties of

the training sets chosen by the GA to build classifiers. Notice the dichotomy between

using observations on the input (i.e. training set) and output/response (i.e. classi-
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fication error) of a classifier treated as a “black box” during genetic search. While

Mating Instincts 1 and 2 were based on a classifier’s “response”, Mating Instincts 3

and 4 are based on a classifier’s “input”.

Mating Instinct 3, in particular, focuses on the differences between the attributes

sets used to build a pair of classifiers. This “instinct” tends to promote the pairing

of specimens whose corresponding classifiers are built with different sets of attributes

(i.e. orthogonal information content). This property naturally fulfills the principle of

“opposites attract” by promoting such pairing. To achieve this, a measure was defined

to capture the dissimilarity between the attribute sets of a pair of classifiers. This

measure is dubbed the Hamming Distance Between Attribute Sets and is computed

as follows: Let the total number of attributes available in a data set be NAT ; the first

attribute has index “1” and the last attribute has index “NAT ” (the subscripts “A”

and “T” stand for “Attributes” and “Total”, respectively). Also, assume an arbitrary

specimen X in the GA population encodes a classifier built with NAX
attribute whose

unique indices are given by a set A = {a1 . . . aNAX
}, where each ai can assume a unique

value in A between “1” and “NAT .” Also, assume another arbitrary specimen Y in

the GA population encodes a classifier built with NAY
attribute whose unique indices

are given by a set B = {b1 . . . bNAY
}, where each bi can assume a unique value in B

between “1” and “NAT .” The Hamming distance HA between the attribute sets A

and B, corresponding to specimens X and Y respectively, is defined by Equation 4.1

below:

HA(X, Y ) = 2 · |A ∪ B| − |A| − |B| (4.1)
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where |A∪B| is the size of the union set of A and B, |A| is the size of set A and |B|

is the size of set B. The measure HA(X, Y ) is defined as the symmetric difference

between the attributes sets A and B. The measure is symmetric and gives the number

of attribute indices that differ in sets A and B. That is, it gives the count of attribute

indices found uniquely in set A and not in B plus the count of attribute indices found

uniquely in B and not in A. The maximum value of HA(X, Y ) is reached when

attribute sets A and B are disjoint27. For example, let sets A and B be disjoint sets,

then Equation 4.1 above yields Equation 4.2:

HA(X, Y )MAX = 2 · (|A| + |B|) − (|A| + |B|) = |A| + |B| (4.2)

.

For a GA population of NP specimens, a symmetric NP × NP distance matrix is

created using the HA distance measure defined above. This matrix is referred to as

the “Attribute Dissimilarity Matrix.” The i-th row and j-th column in this matrix

gives the Hamming Distance Between Attribute Sets of the i-th and j-th specimens,

respectively. This indicates the difference between the attribute sets of two different

specimens. Like in Mating Instinct 1 and 2, the matrix is symmetrical, with zeroed

a out main diagonal.

Mating Instinct 3 helps optimize the GA mating process by improving the uti-

lization of the attribute set information contained in specimens, which leads to the

generation of more diverse solutions. This property is not guaranteed in the con-

27A pair of sets A and B are disjoint sets if none of the elements in set A are found in set B, and
vice-versa.
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ventional mating strategy, where fitness alone dictates the pairing of mating partners

without regard to how well these partners “complement” each other in some criterium

relevant to the problem under investigation.

4.1.6 Proposed Mating Instinct 4 - The Hamming Distance
Between Example Sets

Mating Instinct 4 is computed in a similar fashion to Mating Instinct 3. The only

difference is that the example sets (instead of the attribute sets) encoded in the spec-

imens are used to compute the pairwise Hamming distance given by Equation 4.1.

This distance will be referred to as the Hamming Distance Between Example Sets.

This “instinct” tends to promote the pairing of specimens whose corresponding clas-

sifiers are built with different sets of examples. This property naturally fulfills the

principle of “opposites attract” by promoting such diverse pairing of specimens. Sim-

ilarly, the maximum value of the pairwise Hamming distance is reached when the

example sets of two specimens are disjoint sets.

For a GA population of NP specimens, a symmetric NP × NP distance matrix is

created using the Hamming Distance Between Example Sets from all pairs of speci-

mens in the GA population. This matrix is referred to as the Example Dissimilarity

Matrix. The i-th row and j-th column in this matrix gives the Hamming distance

between the example sets of the i-th and j-th specimens, respectively. This indicates

the difference between the example sets of two different specimens. Like in Mating

Instinct 1, 2, and 3, the matrix is symmetrical, with a zeroed out main diagonal.
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Mating Instinct 4 helps optimize the GA mating process by improving the uti-

lization of the example set information contained in specimens, which leads to the

generation of more diverse solutions. When Mating Instincts 3 and 4 are used con-

jointly with either Mating Instincts 1 or 2 in the multi-population IM-GA strategy,

the GA mating process can perform more “informed” decisions on the optimal pair-

ing of specimens based on information regarding both the input and response of the

classifier being optimized in a given problem. This is an improvement over the con-

ventional mating strategy because fitness-based selection alone does not guarantee

the optimal pairing of specimens.

The following two sections detail how the proposed Mating Instincts 1 through 4

are used in the design of five new mating strategies, both the single-population and

multi-population IM-GA “instinct-based” mating strategies. As was discussed ear-

lier in this section, the proposed IM-GA mating strategies selects pairs of specimens

for mating by combining both fitness-based selection and “instinct-based” selection

of specimens. This is done by choosing the first parents in each parent pair using

fitness-based selection and the second parent in each pair by “endowing” the chosen

first parents with a “mating instinct” that guides their partner selection. The fitness-

based selection component of mating is important because it promotes the further

adaptation of good solutions discovered by the GA (assuming the fitness-function

designed for a problem is indeed a good indicator of solution quality). However, the

GA mating process can be further optimized by pairing these “well-fit” solutions with

other solutions that are orthogonal (complementary) according some other optimiza-

tion criterium, which is the role played by the “instinct-based” mating strategy.
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Table 4.1 defines each of the five IM-GA “instinct-based” mating strategies as

a combination of (1) a fitness-based selection scheme and (2) one or more “mating

instincts.” Column 1 of Table 4.1 gives the IM-GA strategy name, column 2 specifies

the corresponding choice of fitness-based scheme for the selection of the first parents

(either random or deterministic), and column three specifies the corresponding “mat-

ing instincts” (defined earlier in this section) for the selection of the second parents.

In column 2 of Table 4.1, the term “Random” stands for the random selection of the

first parents while the term “Deterministic” stands for the selection of the first par-

ents as the top-fitness specimens in the GA population. This setup is clearly reflected

in the design of the five (5) IM-GA mating strategies discussed in the following two

sections.

Table 4.1: The framework of the IM-GA mating strategies.
IM-GA Fitness-based Mating Instinct GA Population
Strategy Selection Scheme From Section 4.1.1 Type
Name (First Parents) (Second Parents)

Strategy 1 Random Mating Instinct 1 Single
(IM-R-H )

Strategy 2 Deterministic Mating Instinct 1 Single
(IM-D-H )

Strategy 3 Random Mating Instinct 2 Single
(IM-R-CMW )

Strategy 4 Deterministic Mating Instinct 2 Single
(IM-D-CMW )

Strategy 5 Deterministic Mating Instincts 2, 3, 4 Multiple
(IM-MP)

4.2 Single-Population IM-GA Mating Strategies

This section discusses the four (4) single-population IM-GA “instinct-based” mating

strategies. These four mating strategies use Mating Instincts 1 and 2 defined in the
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previous Section 4.1.1 (see Table 4.1). These four mating strategies are designed for

implementations of the GA that adopt a single population of specimens (or a single

pool of potential solutions) to solve optimization problems in the domain of supervised

classification. This setup is commonly referred to as the “single-population GA” and

it is among the most frequently adopted implementations of the GA. The use of a

single-population in the GA also means that the IM-GA mating strategies presented

here “endow” the specimens in the population with one single “mating instinct.”

4.2.1 Proposed Single-Population IM-GA Strategy 1 (IM-
R-H )

The first proposed IM-GA strategy is referred to by the acronym IM-R-H, where “R”

stands for the “Random” (stochastic) selection of the first parent based on fitness

and “H ” stands for the use of the Hamming distance between pairs of error vectors

to randomly select the second parent in each parent pair. Let the GA population

size be NP in an arbitrary problem in the domain of supervised classification. A

total of (NP /2) pairs of specimens must be selected for mating in order to generate

NP new children specimens. In this strategy, the first (NP /2) parents are selected

probabilistically according to their relative fitness values. Then, the partner for the

i-th individual is chosen according to the probability distribution determined by the

values of the i-th row of the Complementary Distance Matrix. This means that

specimens with higher Hamming distance (defined in Section 4.1.3) thus get a higher

chance of being selected, which favors the mating of specimens that err on different

training examples.
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Note that a specimen never mates with itself because the Hamming distance be-

tween two identical error vectors is “0”, unless all specimens in the GA population

have identical error vectors.

4.2.2 Proposed Single-Population IM-GA Strategy 2 (IM-
D-H )

The second proposed IM-GA strategy is referred to by the acronym IM-D-H, where

“D” stands for the “Deterministic” selection of the first parent and “H ” stands for

the use of the Hamming distance between pairs of error vectors to randomly select

the second parent in each parent pair. The only difference between this strategy

and IM-GA Strategy 1 (IM-R-H ) is that in this strategy the first (NP /2) parent

specimens for each parent pair are selected deterministically as those specimens in

the GA population having the highest fitness.

4.2.3 Proposed Single-Population IM-GA Strategy 3 (IM-
R-CMW )

The third proposed IM-GA strategy is referred to by the acronym IM-R-CMW, where

“R” stands for the “Random” (stochastic) selection of the first parent based on fit-

ness and “CMW ” stands for the use of the “Correct-My-Wrongs” distance between

pairs of error vectors to randomly select the second parent in each parent pair. Let

NP be the GA population size. In this strategy, the first (NP /2) parents are selected

probabilistically according to their relative fitness values. Then, the partner for the

i-th individual is chosen according to the probability distribution determined by the

values of the i-th row of the Supplementary Distance Matrix. This mating strat-
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egy promotes the pairing of specimens that promise the correction of misclassified

examples.

Note, again, that a specimen never mates with itself because the “Correct-My-

Wrongs” distance between two identical error vectors is “0”, unless all specimens in

the GA population have identical error vectors.

4.2.4 Proposed Single-Population IM-GA Strategy 4 (IM-
D-CMW )

The fourth proposed IM-GA strategy is referred to by the acronym IM-D-CMW,

where “D” stands for the “Deterministic” selection of the first parent and “CMW ”

stands for the use of the “Correct-My-Wrongs” distance between pairs of error vectors

to randomly select the second parent in each parent pair. The only difference between

this strategy and IM-GA Strategy 3 (IM-R-CMW ) is that in this strategy the first

(NP /2) parent specimens for each parent pair are selected deterministically as those

specimens in the GA population having the highest fitness value.

The single-population IM-GA Strategies 1 through 4 offer two major advantages

over the conventional mating strategy. The first advantage is its incest prevention

mechanism that prevents a specimen from mating with itself. The second advantage

is that the proposed strategies grant higher probabilities to pairs of parents having

higher distance measure values (see Sections 4.1.3-4.1.6 for a discussion of “mating

instincts”), but without making it a clear choice. This means that even specimens

considered “weaklings”, in terms of complementary/supplementary classification per-

formance potential, still have a chance to mate. This is important because a proba-
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bility exists that good solutions may come out of such pairings, hence, they cannot be

ignored. This concept is reflected in nature as well; the evolutionary process is such

that even “weaklings” carry information with the potential for promoting positive

impacts in the future (Shamir, Saad, and Marom 1993).

These two advantages combined aid in diminishing the effects of premature con-

vergence toward sub-optimal solutions in the genetic search, while promoting a more

“informed” specimen pairing behavior in the GA.

4.3 Multi-Population IM-GA Mating Strategy

This section presents the fifth proposed IM-GA “instinct-based” mating strategy,

which is dubbed IM-MP, where “MP” stands for the use of “Multiple Populations.”

The main difference between this multi-population strategy and the single-population

strategies is that this strategy uses three “mating instincts” versus only one (see Ta-

ble 4.1). This strategy is designed for implementations of the GA that adopts multiple

populations of specimens (or multiple pools of potential solutions) to solve optimiza-

tion problem in the domain of supervised classification. This setup is commonly

referred to as the “multi-population GA” and, just like the single-population GA, it

is frequently adopted in implementations of the GA (see Section 3.2.2 for an overview

of the multi-population GA). While the strategies from the previous section each in-

troduced single “mating instincts” that guide the mating process, the mating strategy

discussed here uses multiple “mating instincts” to optimize the GA mating process.

It achieves this by “endowing” the specimens in each sub-population of the GA with

a different “mating instinct.”
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Three “mating instincts” were chosen for implementation of this mating strategy,

namely, Mating Instincts 2, 3, and 4 described in Section 4.1.1. As a result, IM-GA

Strategy 5 described immediately below, relies on a total of three sub-populations to

accommodate the use of the three “mating instincts”; specimens in population 1 mate

according to Mating Instinct 2 (the “Correct-My-Wrongs” distance between pairs of

error vectors), specimens in population 2 mate according to Mating Instinct 3 (the

Hamming Distance Between Pairs of Attribute Sets), and specimens in population

3 mate according to Mating Instinct 4 (the Hamming Distance Between Pairs of

Example Sets).

As will be discussed later, this choice of “mating instincts” fits naturally with

the optimization objectives of the two chosen testbed problems from the domain of

supervised classification. Recall from Chapter 3 that the chosen testbed problems deal

with the optimization of the 1-NN and C4.5 Decision Trees classifiers. To optimize

these classifiers, both noisy/irrelevant attributes and noisy/redundant examples in

the training set have to be discarded to improve classification accuracy and minimize

classification costs. In an analogous fashion, the three “mating instincts” chosen

to implement this mating strategy (IM-MP) also seek to optimize the classification

accuracy of the classifiers (Mating Instinct 2) as well as the quality of the attribute

and example sets (Mating Instincts 3 and 4) of the training set, respectively.

The design of a multi-population “instinct-based” mating strategy is more com-

plex than the single-population counterpart. This is due to the added complexities

of having to choose both from which populations the parent specimens should be

picked from as well as the populations that the generated children should be inserted
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into (migration). Regarding the mating partner selection process, this strategy also

pairs specimens by choosing the first parents in each parent pair using fitness-based

selection and the second parent in each pair by “endowing” the chosen first parents

with a “mating instinct” that guide their partner selection. The main difference be-

tween this strategy and those presented previously is that the parent specimens can

be selected from any of 3 populations. Moreover, the “mating instinct” adopted by

each population seeks to optimize the GA mating process along a different criterium.

Note that various evolutionary principles inspired the design of this multi-population

mating strategy, IM-MP. These principles are clearly reflected in the stages of the GA

mating process described in the subsequent sections. The evolutionary scenario de-

picted in this strategy is that of a small microcosm exhibiting both natural behaviors

of competition and cooperation among sub-populations. A specimen in a particular

population focuses on the search for another individual with whom a potential off-

spring could have a better chance of surpassing it in optimizing a specific objective.

However, competition among populations arise due to the limited availability of ge-

netic information (or diversity) in each population. Without this precious resource,

none are able to fulfill their purpose of thrusting their offsprings to higher evolution-

ary stages (adaptation). Specimens must then unite as nations to compete against

other populations for this same resource; populations compete with each other to

place their specimens in the mating pool. At the same time, a cooperative behavior

also emerges from a natural consensus that all populations must be able to improve

simultaneously. After all, the well-being of the microcosm as a whole depend on the

well-being of all.
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To this end, unrestricted mating and migration of specimens (and children) among

the individual populations is adopted to ensure a balanced distribution of informa-

tion diversity among all populations. Specimens which have been successful in passing

along their best traits to future generations, are also willing to relinquish their children

to other populations. As a child is absorbed into the “archetype” of its adoptive pop-

ulation, it is led to seek that population’s optimization objectives that is represented

as a “mating instinct”.

This sacrifice is one that all must concede to in order to reap the benefits of

two important aspects: one is the ability to tap into the genetic diversity of other

populations through unrestricted mating, and the second is contributing to the en-

hancement of the mating pool through more diverse individuals in every generation.

Through this cooperative behavior, the stagnation of any individual population is

better prevented.

To the author’s best knowledge, no other research has been developed that com-

bines the multi-population GA with a form of “instinct-based” mating. That is, this

is a novel idea.

4.3.1 Proposed Multi-Population IM-GA Strategy 5 (IM-
MP)

This strategy is dubbed IM-MP, where “MP” stands for the use of “Multiple Populations.”

Let the total number of specimens in an application the GA to an arbitrary prob-

lem in the domain of supervised classification be NP . Also, let the NP specimens

be divided equally into three independent populations, each having a total of NP/3
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specimens. The three populations are referred to as “population 1”, “population 2”,

and “population 3.” Then, the mating process consists of selecting a total of (NP /2)

pairs of specimens (parents) from among the three populations. These NP /2 pairs of

chosen specimens are then recombined into NP new children specimens. For simplic-

ity, assume NP = 30 for all of the examples that follow. The mating partner selection

process consists of the following four steps:

1. Step 1: Choose a population from which each parent will be selected, that is,

choose each parent’s population ID (either 1, 2, or 3);

2. Step 2: Select the actual parent specimens according to the selected population

IDs;

3. Step 3: To obtain children, apply recombination (i.e. two-point crossover) and

mutation, and ;

4. Step 4: Decide how to assign each generated child to a population.

These four steps are detailed as follows:

Step 1: This first step consists of probabilistically selecting 15 pairs (NP /2) of

population ID’s for the parent specimens using a wheel-of-fortune scheme given by

Equation 4.3 below. This scheme uses the average fitness of the specimens in each

population, where the choice of the fitness-function is problem-dependent, to ran-

domly select the population ID’s for the parent specimens. This mechanism causes

the populations to compete among themselves in order to enter the mating pool of 15

(NP /2) mating pairs. Valid chosen population ID values are within the integer range
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{1, 2, 3} and correspond to populations 1, 2, and 3, respectively. This population ID

selection is accomplished in two steps. First, 30 ID values (NP ) are consecutively

selected randomly using a wheel-of-fortune scheme based on the probability values

assigned to the different populations by Equation 4.3. Next, the randomly chosen

ID values are paired consecutively to generate 15 pairs of population ID values. Pop-

ulation ID pair repetition is allowed. That is, pairs of population ID values such as

{[1 1], [2 2], [3 3]} are valid and simply entail that specimens from the same population

will be chosen for crossover (since the population IDs match in each pair). On the

other hand, population ID pairs such as {[1 2], [1 3], [2 1], [2 3], [3 1], [3 2]} entail that

specimens from different populations will be chosen for mating (since the population

IDs differ in each pair). Notice that Equation 4.3 favors those populations having

higher average fitness by granting them higher selection probability values:

Prob(Pi)Parent =
MeanFitness(Pi)

∑

jǫJ

MeanFitness(Gj)
(4.3)

where

• Pi and Pj , for i = 1, . . . 3 and j = 1, . . . 3, denote the ith and jth populations,

respectively;

• Prob(Pi)Parent, for i = 1, . . . 3, denotes the probability of a parent from the ith

population being selected for mating;

• MeanFitness(Pi), for i = 1, . . . 3, is the mean fitness value of all specimens in

the ith population, and;
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• MeanFitness(Pj), for j = 1, . . . 3, is the mean fitness value of all specimens in

the jth population.

The 15 (NP /2) selected pairs of population ID’s can be represented by a 15 × 2-

dimensional matrix G that holds the 15 pairs of population ID’s as row vectors

Gk=[pk1, pk2], for k=1,2,. . . ,15 and p=1,2,3. Figure 4.5 below illustrates the process

of computing the G matrix from a set of arbitrary probability values computed by

Equation 4.3. Notice from the example that population 1 has higher selection proba-

bility than populations 2 and 3 (43%). This is reflected in population 1’s greater share

of the total area of the wheel-of-fortune, followed by population 3 and 2, respectively:

Figure 4.5: Sample selection of population ID’s for parent specimens in IM-GA Strat-
egy 5.

Step 2: Once matrix G has been computed, the second step involves selecting

actual specimens from the chosen populations for mating. At this stage, certain

considerations come into play. First, recall that this multi-population mating strategy

must optimize search in three distinct populations with size NP/3, in contrast to the

single-population IM-GA Strategies 1 through 4 which assume a single population of

size NP . While constraining the total number of specimens in all populations to NP

specimens ensures that the experimental results of all strategies are comparable, the
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reduced size of the individual populations in this strategy (10 specimens, or NP/3),

makes the optimization problem slightly harder. To ensure the efficient use of the

information diversity available in the populations of reduced sizes, this strategy adopts

the deterministic selection of the first parents in each mating pair (those corresponding

to the left-hand side of matrix G) as the top-fitness specimens in each population.

This improves the odds of probabilistically matching better parents from different

populations and also improves the utilization of information diversity in the smaller

populations by avoiding duplicate selection of specimens (contrast random selection,

which allows duplicate selection of specimens).

However, the second parents of each mating pair (those corresponding to the right-

hand side of matrix G) are then selected according to a “mating instinct.” Consider

that each mating pair combination consists of both a left-hand side and a right-hand

side parent. This means that column 1 and 2 of matrix G represent the population

ID’s of the left-hand side and right-hand side parents, respectively. Let the constants

Col1 i and Col2 i, for i = 1, . . . 3, be the total count of times the ith population

ID appears in column 1 and 2 of matrix G, respectively. First, the left-hand side

parent specimens are chosen by picking the Col1 i top-fitness specimens from each

population as the left-hand side representative parents in the 15 (NP /2) parent-pair

combinations. This process is performed such that the first occurrence of the ith

population ID in column 1 of matrix G corresponds to the first top-fitness specimen

of the ith population, the second occurrence of the ith population ID in column 1 of

matrix G corresponds to the second top specimen of the ith population, and so on, for

all populations 1, 2, and 3. Figure 4.6 illustrates more clearly how the population
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ID values in column 1 of matrix G are used to select the top-fitness specimens of each

population as the left-hand side parents in the 15 (NP /2) mating pair combinations.

Notice that each parent specimen is represented by both a population ID and a

specimen ID. The former ID consecutively matches the population ID’s in column 1

of matrix G while the latter consecutively matches the top-fitness specimens of each

population. Also, notice that the right-hand side parents are left blank for now, to

illustrate that the right-hand side parents are selected only in the subsequent step

using an “instinct-based” selection process:

Figure 4.6: Translating population ID’s in column 1 of matrix G to actual left-hand
side parent specimens in IM-GA Strategy 5.

When choosing specimens for the right-hand side of matrix G, the population ID

of the left-hand side parents play an important role. The right-hand side parents

are, in essence, matched to the left-hand side parents using “mating instincts.” The

choice of “mating instinct” is determined based on a left-hand side population ID;

each population seeks to optimize a different mating objective. For each parent-pair

represented by a row of matrix G, the selection of the right-hand side parents works

as follow:
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1. If the population ID of the left-hand side parent is “1”, then the “Correct-

My-Wrongs ‘̀ (CMW ) distance is computed between the error vector of the

chosen left-hand side parent from population 1 and the error vectors of all NP/3

specimens from the population identified by the corresponding right-hand side

population ID;

2. If instead the population ID is “2”, then the Hamming distance is computed be-

tween the training data attribute set encoded by the chosen left-hand side parent

specimen and the training data attribute sets encoded by all NP/3 specimens

from the population identified by the corresponding right-hand side population

ID, and;

3. Finally, if the population ID is “3”, then the Hamming distance is computed be-

tween the training data example set encoded by the chosen left-hand side parent

specimen and the training data example sets encoded by all NP /3 specimens

from the population identified by the corresponding right-hand side population

ID.

For any of the criteria above, the NP/3 computed distance values are transformed

into probability shares in a wheel-of-fortune based selection scheme. If the i-th value

is picked, then the i-th specimen from the corresponding right-hand side population

will mate with the left-hand side parent. In summary, specimens from the different

populations that were chosen as the left-hand side parents in the mating pool will

mate according to the principal “mating instinct” of their corresponding populations.
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Furthermore, referring back to the example given in Figure 4.6, this also means

that for the fifth row of matrix G, the CMW distance measure is computed between

the error vectors of specimen 2 from population 1 (left-hand side parent) and all

specimens of population 2. A specimen from population 2 is then randomly picked as

the right-hand side parent based on the resulting probabilistic distribution. For the

second row of matrix G, the Hamming distances is computed between the example

set encoded by specimen 1 from population 3 and the example sets of all specimens

in population 1. Again, the values are used to randomly pick an actual parent from

among the specimens in population 1.

The overall tendency of this proposed mating strategy is to guide specimens from

population 1 to pair-up with other specimens having a high potential for reinforcing,

or further improving, their classification performance (e.g. correcting their errors).

Moreover, the tendency is also to guide specimens in population 2 to pair-up with

other specimens encoding more diverse set of attributes. Finally, the tendency is

also to guide specimens in population 3 to pair-up with other specimens having more

diverse set of examples. This tendency to promote more diverse specimen pairing is

an improvement over the conventional mating strategy (because it attempts to make

explicit use of the information in the specimens to optimize the GA mating process.

Step 3: In the third step, crossover28 is then applied to the 15 pairs (NP /2) of

selected parent specimen from different combinations to generate a total of 30 children

(NP ). Note that crossover step is mentioned here only as a placeholder for any desired

28Crossover is the exchange of genetic information encoded in the chromosomes of specimens to
generate new specimens. Typically, the crossover operation is performed on a pair of specimens
(“parents”) to generate a new pair of specimens (“children”), although some implementations of the
GA allow crossover between more than two parents.
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implementation. The crossover step does not impact the mating strategy. Crossover

is mentioned here for completeness since the mating strategy of the multi-population

GA dictates how specimens are paired for mating before the crossover step and also

to which populations the generated children are migrated after the crossover step.

Hence, the crossover step has to be mentioned here only for the completeness of the

description of the mating strategy, and not because the crossover step has an impact

on mating.

Step 4: Finally, in the fourth step, the 30 (NP ) generated children have their

population ID’s assigned probabilistically, and independent of their original parents’

ID’s, using the wheel-of-fortune scheme given by Equation 4.4. The process of

choosing into which population to send a new specimen is known as “migration” in

the GA:

Prob(Pi)Child =
1/MeanFitness(Pi)

∑

jǫJ

1/MeanFitness(pj)
(4.4)

where

• Pi and Pj , for i = 1, . . . 3 and j = 1, . . . 3, denote the ith and jth populations,

respectively;

• Prob(Pi)Child, for i = 1, . . . 3, is the probability that a generated child will be

migrated to the ith population;

• MeanFitness(Pi), for i = 1, . . . 3, is the mean fitness value of all specimen in

the ith population, and;
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• MeanFitness(Pj), for j = 1, . . . 3, is the mean fitness value of all specimen in

the jth population.

Figure 4.7 illustrates how a set of arbitrary probability values given by Equa-

tion 4.4 are mapped into the population ID’s chosen for the children specimens

(migration). The probability values are inversely related to average fitness of each

population. Notice from the illustration that population 2, which in the previous ex-

ample given in Figure 4.5 was depicted as having the lowest average fitness value, is

now depicted as having the largest probability share of the wheel-of-fortune, followed

by population 3 and 1, respectively.

Figure 4.7: Sample selection of the children’s population ID’s in IM-GA Strategy 5.

Each child specimen is thus migrated, probabilistically, to one of the three popula-

tions that are chosen as described above. A similar approach was advocated by Grosso

(1985), the motivation being that the migrant specimens should be sent preferably to

populations where they are likely “to make a difference.”

Since each child can be “seeded” into any population, genetic diversity benefits.

Populations with higher average fitness tend to mate more frequently, populations

with lower average fitness are more likely to receive the children. The goal is an
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equilibrium between the probabilities of selecting a parent from, and assigning a

child to, any population.

Figure 4.8 illustrates by showing the convergence behavior of the three pop-

ulations of IM-GA Strategy 5 when used in the baseline RK-GA0 and applied to

the cmc data set from the UCI Machine Learning Repository (Newman and Merz

1998). The horizontal axis gives the cumulative number of specimens for which the

fitness-function has been evaluated (this way of measuring time is independent of

the programmer’s skills and the computer’s performance). The vertical axis plots

the fitness of the best specimen in each population. Notice how the average fitness

of the populations periodically surpass each other, reflecting the selection/migration

processes. In the long run, all populations tend to converge to similar fitness.

The migration thus described also ensures that the mating pool of each popula-

tion is enriched with specimens optimized along the other criteria (classification error,

example set diversity, and attribute set diversity). This leads to simultaneous opti-

mization of multiple objectives in the GA mating process as the populations share

their best traits.

Finally, children are placed in their target populations in each new generation

of the GA. At this point, the survival operator is applied to retain the top NP/3

specimens in each population, according to some criteria, and discard the remaining

specimens. The choices of the survival operator do not affect the proper operation of

IM-GA Strategy 5, which was designed to work properly even with single specimen

populations.
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Figure 4.8: Sample convergence of the IM-GA multi-population GA Strategy 5 (IM-
MP) when used in the baseline RK-GA0 and applied to the cmc data set.

The next sections describe the application of IM-GA Strategies 1 through 5 to

optimize genetic search in the two chosen testbed problems of 1-NN Tuning and

Optmal Decision Forest.

4.4 Testbed Problem 1 - The 1-NN Tuning Prob-

lem

This section discusses how the the five proposed IM-GA “instinct-based” mating

strategies are used to optimize genetic search in the testbed problem of 1-NN Tuning.

Briefly, the 1-NN Tuning problem consists of searching for optimal subsets of examples
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and attributes in a data set with the goal of improving the accuracy of the 1-NN

classifier (as removal of noisy examples and irrelevant/noisy attributes from a data

set improves the 1-NN accuracy). This section shows how the IM-GA strategies can

replace the conventional fitness-based mating strategy in a real implementation of the

GA that is designed to search for optimal 1-NN classifiers.

Recall from Section 3.2 that “mating” is only a part of the GA iterative process.

Therefore, the IM-GA mating strategies cannot be used alone to solve search and

optimization problems because they are not a complete GA. Hence, the first step in

the process of evaluating the impact of IM-GA on the performance of the GA when

applied to a certain optimization problems, is to design a good GA capable of finding

good solutions to that optimization problem. Moreover, this GA should adopt and

work well with the conventional mating strategy. This way, a good set of baseline

experimental results based on the performance of the conventional mating strategy

can be attained. These “baseline results” can then be compared to those results

obtained after applying the five (5) new IM-GA strategies. This will indicate real

improvement.

In this work, the well-known GA, the RK-GA (Rozsypal and Kubat 2003), was

re-implemented and improved to be used as the baseline GA to generate optimal 1-

NN classifiers for Testbed Problem 1. This improved version of RK-GA is hereinafter

referred to as the baseline RK-GA0. RK-GA0 fits all the prerequisites discussed

above. First, the original RK-GA has been shown to compare favorably with other

GA-based and non-GA-based techniques on various experiments with UCI data sets.

It is, therefore, a good GA that finds goods solutions to the 1-NN Tuning problem.
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Because the original RK-GA adopted the conventional fitness-based mating strategy

and performed well (Rozsypal and Kubat 2003), any improvements to the baseline

RK-GA0 by IM-GA are real improvements.

The next few sections show how the five proposed IM-GA mating strategies were

incorporated into the baseline RK-GA0’s framework. The experimental results pre-

sented in Chapter 5 confirmed that IM-GA can indeed accelerate RK-GA0 and that

the faster convergence did not come at the cost of lower quality of the discovered

solutions. In addition, the next few sections also demonstrate theoretically that the

IM-GA mating strategies require negligible computational overhead when introduced

in RK-GA0. In summary, IM-GA sped up RK-GA0 without harming its performance

under any criteria.

4.4.1 Solving 1-NN Tuning with the Original RK-GA

This section discusses a GA built upon in this work to solve the 1-NN Tuning problem

(Testbed Problem 1). This GA is called RK-GA and it is named after Rozsypal

and Kubat who introduced this GA in 2003 (Rozsypal and Kubat 2003), and who

were inspired by successful earlier works in the application of the GA to the 1-NN

Tuning problem (Kuncheva and Jain 1999; Kuncheva and Bezdek 1998). In their

work, Rozsypal and Kubat introduced an alternative method to the original approach

developed by Kuncheva and Jain (1999) which used a novel variable-length, value-

encoded specimen chromosome scheme. In the RK-GA method, each specimen in the

population is represented by two chromosomes: one attribute chromosome and one

example chromosome. Combined, the two chromosomes encode a training set that
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is used to build potentially optimal 1-NN classifiers at the end of the genetic search.

Their proposed chromosomal structure is illustrated in Figure 4.9.

chromosome 1 chromosome 2
SPECIMEN:

examples attributes

Figure 4.9: Original RK-GA specimen with one example chromosome and one at-
tribute chromosome.

Value encoding is employed such that each “allele” (or field) of a given chromo-

some carries an integer value that points either to a training example or attribute.

For instance, the specimen {2, 9, 15},{1, 3} represents the three training exam-

ples ({2, 9, 15}) whose values are defined using only the first and third attributes

(all other attributes and examples in the training set are ignored). When this spec-

imen is decoded to build a 1-NN classifier, the training set examples are selected

via the example chromosome, while the training set attributes are selected via the

attribute chromosome. The resulting 1-NN classifier uses the distance metric defined

by Equation 4.5 between any two example vectors to classify unknown examples:

D(x, y) =

√

√

√

√

n
∑

i=1

d(xi, yi) (4.5)

where d(xi, yi) is the contribution of the i -th attribute. For numerical attributes,

d(xi, yi) = (xi − yi)
2, while for boolean and discrete attributes the value is computed

as d(xi, yi) = 0, for xi = yi, and d(xi, yi) = 1, for xi 6= yi.

Specimen Fitness Evaluation

Fitness evaluation is the process of measuring the quality of a GA-generated solution

(or specimen). Rozsypal and Kubat introduced in their RK-GA a fitness-function
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that proved to be an effective specimen discriminating measure, as supported by

the good results reported in (Rozsypal and Kubat 2003). The fitness-function of

RK-GA is defined by Equation 4.6, where ER is the number of training examples

misclassified by a given specimen (or its corresponding 1-NN classifier), NE is the

number of retained examples (or the cardinality of the retained example set), NA

is the number of retained attributes (or cardinality of the retained attribute set),

and c1, c2, and c3 are user defined weight parameters. The fitness-function assumes

value fRK-GA= 0, for NE = 0 or NA=0, since no meaningful training set can have 0

examples or attributes. Equation 4.6 utilizes the weighted sum approach described

in (Coello 1999) to combine the multiple optimization objectives of (1) maximizing

the classification accuracy, (2) reducing the cardinality of the attribute set, and (3)

reducing the cardinality of the example set, into a single fitness-function:

fRK-GA =
1

c1 · ER + c2 · NE + c3 · NA

(4.6)

Recombination

At each iteration of RK-GA, a new population is created by choosing parents from

which children are generated through the process of recombination. Parents are

selected probabilistically using the wheel-of-fortune based scheme given by Equa-

tion 4.7:

Prob(S ′) =
f(S ′)

∑

f(S)
(4.7)
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where f(S) is the fitness of an arbitrary specimen S. This parent selection scheme

is the conventional mating strategy that IM-GA seeks to replace. Once a pair of

parents have been chosen, a two-point crossover scheme (see below) is employed to

create a pair of children.

Two-Point Crossover

To apply the two-point crossover on a given parent-pair, let the length of one of the

parent’s first chromosome be denoted by N1 and the length of the second chromosome

be denoted by N2. A pair of two integers for each chromosome is then randomly

selected over the closed interval [1, N1] and [1, N2], respectively, using the uniform

distribution. Finally, the two pairs of integers are used to define substrings in the

respective chromosomes, which are then exchanged with the respective chromosome

substrings that were defined for the second parent in the same fashion. Figure 4.10

illustrates this two-point crossover scheme for a single chromosome on an arbitrary

pair of parent specimens A and B. This crossover scheme is applied in the same

fashion to both the example and attribute chromosomes:

A

B

A'

B'

Before After

Figure 4.10: Two-Point Crossover of a single chromosome

Mutation

Mutation is applied to each of the generated children in each generation of the GA.

The mutation operator randomly selects a specified percentage of the “alleles” (or

fields) in both the example and attribute chromosomes of a given child specimen
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and adds to them a randomly generated integer. The final mutated values are then

modulo29 the total number of examples or attributes. This confides the final mutated

values to a valid range that is data set relevant. RK-GA used a mutation rate of

5% for all of the experiments.30 The sensitivity experiments showed no detrimental

effects due to small variations of this value.

Population and Survival

In RK-GA the GA population size was fixed to a total of 30 specimens. For consis-

tency, this population size is also adopted in all experiments with RK-GA presented

in this work. The population is initialized (the chromosomes filled) with uniformly

distributed random integers over the range of the number of examples and attributes,

respectively. In each new generation, 30 children are generated, then merged with the

original/surviving population. Finally, all specimens, new and old, are then sorted

by rank of fitness. The principle of survivor selection elitism (Bentley 1999) is then

used to ”kill-off ” the worst half specimens.

Termination Criterion

In RK-GA, a fixed number of 100 generations was adopted for the experiments with

benchmark data sets acquired from the UCI Machine Learning Repository (Newman

and Merz 1998). Again for consistency with the previous work, all experiments with

the baseline RK-GA0 presented in this work also run for 100 generations. An increased

number of generational runs was found to be overly laborious, in addition to not

29The modulo operation gives the remainder of a division operation.
30A mutation rate of 5%-10% is a typical range
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necessary to demonstrate the relative improvement of the proposed IM-GA “instinct-

based” mating strategies over conventional fitness-based mating strategy.

4.4.2 An Improvement to the Original RK-GA (Baseline RK-

GA0)

This section describes an improvement introduced by this work to original RK-GA’s

fitness-function presented in (Rozsypal and Kubat 2003). One of the main advantages

of the proposed improvement is that it allows the weight parameters of Equation 4.6

to be set in a data set relevant fashion that completely eliminates the need for manual

tuning. The new RK-GA adopting the new fitness-function is referred to as the

baseline RK-GA0. All experiments relevant to Testbed Problem 1 (1-NN Tuning) that

were performed in this work used RK-GA0 as a baseline GA. Hence, the experimental

results of RK-GA0 serve as the baseline for evaluating the impact of the proposed

IM-GA strategies on the optimization of genetic search.

In spite of the original RK-GA’s promising results as it exists unmodified, a con-

troversy arises regarding the arbitrary values of the user-defined weight parameters

c1, c2, and c3 employed in the original experiments. Due to limited knowledge about

the sensitivity of the GA to the different terms of the fitness-function, all three pa-

rameters were assigned the value 1 in the original RK-GA. This provided the same

level of significance to all terms (optimization objectives) of Equation 4.6. However,

this is not an intuitive choice because different terms can assume different ranges of

values and, therefore, have different search space sizes (e.g. a data set can have a

significantly larger number of examples than attributes). Consequently, the GA needs
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to spend significantly more effort searching through the larger search spaces of certain

terms for optimal solutions. The differences in the search space sizes of the different

terms of Equation 4.6 should be reflected in the values of the weights assigned to the

different terms. These differences in weight values would consequently instruct the

GA on the degree of optimization priority of each term. Here, the original RK-GA’s

fitness-function is improved through a new approach for setting of weight values that

take into account the aforementioned considerations. The new weight values are set

automatically in a data set relevant way. Finally, another advantage of this auto-

matic setting of weights is that manual effort spent in coefficient tuning is no longer

required.

It would be unwise, however, to simply discard the adequacy of Equation 4.6,

especially in view of the excellent performance depicted in the experimental results

presented by Rozsypal and Kubat (2003). Hence, the new fitness-function was built

by dissecting the inner-workings of Equation 4.6 to reach a better understanding of

its contribution to the original RK-GA. This process resulted in a new (and unitless)

fitness-function developed directly from the baseline Equation 4.6.

The new fitness-function is derived as follows. Let NET and NAT be the total

number of examples and attributes in a given training data set, respectively. Also, let

NC be the number of training examples correctly classified by a given specimen (or

its corresponding 1-NN classifier) and NED and NAD be the total number of training

examples and attributes discarded by a given specimen, respectively. Using these

variables, Equation 4.6 can be sequentially re-written into a different form through

Equations 4.8, 4.9, and 4.10, respectively:
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fRK-GA =
1

c1 · (NET − NC) + c2 · (NET − NED) + c3 · (NAT − NAD)
(4.8)

fRK-GA =
1

[(c1 + c2) · NET + c3 · NAT ] − [c1 · NC + c2 · NED + c3 · NAD]
(4.9)

fRK-GA = ([(c1+c2)·NET+c3·NAT ]−[c1·(NET−ER)+c2·(NET−NE)+c3·(NAT−NA)])−1

(4.10)

Notice from the denominator of Equation 4.10 that the first term in brackets

simply sums up to a positive constant value. Therefore, maximizing Equation 4.10,

or in other words, maximizing the fitness value of a given specimen, consists of maxi-

mizing the second term in brackets that holds the independent variables ER, NE , and

NA. These findings allude to the following three sensible conclusions regarding the

objectives that the original RK-GA’s original fitness-function sought to optimize:

• In terms of classification accuracy: maximize the difference between the total

number of examples in a given data set and the total number of misclassified

examples by a given specimen, i.e., (NET − ER);

• In terms of the size of the example set: maximize the difference between the

total number of examples in a given data set and the total number of examples

retained by a given specimen, i.e., (NET − NE), and;
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• In terms of the size of the attribute set: maximize the difference between the

total number of attributes in a given data set and the total number of attributes

retained by a given specimen, i.e., (NAT − NA).

These three conclusions allow for the derivation of a new fitness-function given

by Equation 4.11 that also seeks to optimize the three aforementioned objectives.

Notice that this new fitness-function is also maximized with decreasing classification

error and size of the example and attribute sets. This fitness-function is used in the

improved version of RK-GA, the baseline RK-GA0:

fRKNew
= c1 ·

(

NET − ER

NET

)

+ c2 ·

(

NET − NE

NET − 1

)

+ c3 ·

(

NAT − NA

NAT − 1

)

(4.11)

Notice also that each of the terms of Equation 4.11 are normalized by constants

placed in their respective denominators. These constants are the maximum values of

each term. For instance, the maximum value of Equation 4.11 is attained when an

arbitrary specimen encodes a 1-NN classifier that is 100% accurate (ER = 0) while

being described by a single training example and attribute (NE = NA = 1); this is

as compact and accurate as any 1-NN classifier can possibly become. Therefore, the

highest possible values in the numerators of the different terms of Equation 4.11 are

NET , NET − 1, and NAT − 1 when when ER = 0, NE = 1, and NA = 1, respectively.

This normalization step ensures that all terms of the fitness-function are expressed

as unitless, fractional percentage values.

Finally, the genetic search emphasis on each of the terms (optimization objec-

tives) of Equation 4.11 is controlled by the weight parameters c1, c2, and c3. It
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was found empirically that the domain size31 of each of the terms of Equation 4.11

is a good estimators of the relative share of genetic search emphasis that each term

should receive. This intuitive solution is based on the assumption that the simulta-

neous optimization of all objectives of Equation 4.11 requires proportionally larger

appropriations of the GA search emphasis to those terms having larger search spaces.

For example, assume the baseline RK-GA0 is applied to a data set containing a signif-

icantly larger number of examples than attributes. To build optimal 1-NN classifiers,

RK-GA0 will naturally have to spend more computational time attempting to deter-

mine which examples are noisy or not versus which attributes are noisy/irrelevant.

The weight selection scheme proposed here acknowledges that the total number of

possible values that each of the terms of Equation 4.11 can assume (all terms in

Equation 4.11 are integer valued and have finite domains) also explicitly reflect

their intrinsic optimization complexity relative to one another.

The properties of the data set can be used to estimate the number of possible

values that each term can have. Notice that the size of the domains of the first and

second terms of Equation 4.11 are both equal to NET +1, since ERǫ{0, 1, 2, . . . , NET}

and NEǫ{0, 1, 2, . . . , NET}. Also, the size of the domain of the third term is found to

be equal to NAT +1, since NAǫ{0, 1, 2, . . . , NAT}. This choice of weight parameters is

data set adaptive and, consequently, completely eliminates the need for manual effort

in the tuning of weight values for any data set. As a final requirement, the weight

parameters c1, c2, and c3 should also be normalized in order to conveniently conserve

31The domain size of an integer valued variable is equivalent to the total number of possible values
that the variables may assume.
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the unitless and normalized nature of the terms of Equation 4.11. To this end, the

weights c1, c2, and c3 are respectively defined by Equations 4.12, 4.13, and 4.14:

c1 =
NET + 1

2 · NET + NAT + 3
(4.12)

c2 =
NET + 1

2 · NET + NAT + 3
(4.13)

c3 =
NAT + 1

2 · NET + NAT + 3
(4.14)

The experimental results attained by the application of the baseline RK-GA0 to

Testbed Problem 1 were attained using this new fitness-function. The results were

either comparable or better than those previously reported in (Rozsypal and Kubat

2003), where the old fitness-function was employed in the original RK-GA. The new

fitness-function lead RK-GA0 to generate better solutions in terms of classification

accuracy and also example and attribute reduction. Thus, it is safe to conclude

that the new fitness-function performs better than the old one.

The next sections define different permutations of the baseline RK-GA0 combined

with an IM-GA mating strategy that were investigated in this work. The name of

each permutation carries the keyword “RK-GA” and a number that corresponds to

the IM-GA mating strategy adopted in that combination (e.g. RK-GA1 denotes the

combination of the baseline RK-GA0 with IM-GA Strategy 1). This is done to ease

the recognition of the chosen combinations of mating strategies in the experimental

section.
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4.4.3 The Computational Costs of the Baseline RK-GA0

All GAs have computational costs of both time and storage (the “costs”). Costs

are dominated by various factors, such as by the GA architecture or by problem-

dependent factors. An example of the architectural dependence of costs is that of

GAs based on Pareto-dominance (Coello 1999). In such GAs, most of the compu-

tational time is easily spent performing the required Pareto-dominance sorting pro-

cedure needed to determine non-dominated individuals in each generation. Problem

dependency of costs is often reflected in the complexity of the computations required

for fitness evaluations. The baseline RK-GA0, as well as the novel GA designed for

Testbed Problem 2 (the baseline TM-GA0), are good example of GAs whose costs are

dominated by the fitness-function evaluation. In RK-GA0, and even in the original

RK-GA, computing the specimens’ training errors is the most costly step because it

involves multiple iterations of 1-NN search (Cheatham and Rizki 2006). All of the

other components (mating, recombination, mutation, survival) add only negligible

cost compared to fitness evaluation. The importance of examining the computational

costs of RK-GA0 is to ensure that the benefits of using the proposed IM-GA mating

strategies are not outweighed by additional computational costs.

In RK-GA0, the computational costs are dominated by the nearest-neighbor search

process required for fitness evaluation. For a closer look at how computing training

errors impact cost, let us consider the cost of finding the nearest neighbor of a single

training example X in an arbitrary specimen in the GA population. Let NE and NA

be the size of the specimen’s example and attribute chromosomes, and let Y denote
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any other single example in the arbitrary specimen. Let TM , TS, and TA be the

CPU time required to perform multiplication, subtraction, and addition operations,

respectively. Assuming the worst-case scenario of entirely numerical attributes (in the

implementation of the 1-NN classifier used in this work, the distance between nominal

attribute values is computed as a lightweight boolean operation), Equation 4.5 (the

“Euclidean distance”) can be simplified as follows:

D′(X, Y ) =

NA
∑

i=1

(Xi − Yi) · (Xi − Yi) (4.15)

Equation 4.15 gives a distance between the training example X and any one

example Y in the arbitrary specimen. The computational time of the Euclidean

distance computation is estimated by Equation 4.16:

T imeCPU(D′(X, Y )) = NA · TM + 2 · NA · TS + (NA − 1) · TA (4.16)

In the worst-case of large attribute and example chromosomes, where NE → NET

and NA → NAT , the computational time required to find the nearest neighbor of X,

defined here as or NN(X), for an arbitrary specimen is given by Equation 4.17:

T imeCPU(NN(X)) = NET · NAT (TM + 2 · TS + TA) (4.17)

Then, the computational time required to find the nearest neighbors of all training

examples in the arbitrary specimen is given by Equation 4.18:

T imeCPU Total = NET
2 · NAT (TM + 2 · TS + TA) (4.18)
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Equation 4.18 shows that the computational time required to compute the train-

ing error of the 1-NN classifier is proportional to the training set size. In contrast,

the computational time of all other steps in the GA iterative process is a function of

the population size (NP ) alone, which is usually a small constant and independent

of data set properties. Thus, the worst case computational time cost of RK-GA0 is:

O(NET
2 · NAT ).

Similarly, the storage cost is dependent on the training set size only, or: O(NET ·

NAT ).

The 1-NN search process is the dominating factor in the scalability of RK-GA0

when applied to large data sets. We will show that the time and storage costs the

proposed IM-GA mating strategies is negligible compared to that of 1-NN search.

4.4.4 Improving the Baseline RK-GA0 with IM-GA: RK-

GA1, RK-GA2, RK-GA3, RK-GA4, and RK-GA5

For the purposes of evaluating the impact of the proposed IM-GA mating strategies

in the optimization of RK-GA0, the following five combinations of RK-GA0 and one

of the IM-GA mating strategies are defined:

• RK-GA1: Let this be a new GA resulting from the adoption by RK-GA0 of

IM-GA single-population Strategy 1 in its mating process;

• RK-GA2: Let this be a new GA resulting from the adoption by RK-GA0 of

IM-GA single-population Strategy 2 in its mating process;

• RK-GA3: Let this be a new GA resulting from the adoption by RK-GA0 of

IM-GA single-population Strategy 3 in its mating process;
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• RK-GA4: Let this be a new GA resulting from the adoption by RK-GA0 of

IM-GA single-population Strategy 4 in its mating process, and;

• RK-GA5: Let this be a new GA resulting from the adoption by RK-GA0 of

IM-GA multi-population Strategy 5 in its mating process.

These five different configurations of RK-GA0 will be referred to in the experimen-

tal section. It is important to note that for RK-GA5, the original single population

of RK-GA0 with 30 specimens was split into three equally sized populations, each

having 10 specimens. This modification was done to ensure that all IM-GA mating

strategies run with the same total number of specimens in the GA population.

4.4.5 The Computational Costs of the Baseline RK-GA0 with
IM-GA

It is imperative that the benefits of the IM-GA “instinct-based” mating strategies to

RK-GA0 are not outweighed by additional computational costs. In other words, the

computation of the distance metrics representing IM-GA’s “mating instincts” should

require only negligible additional computational costs when compared to RK-GA0.

In theory, the costs of computing the Complementary, Supplementary, Example

Dissimilarity, or Attribute Dissimilarity distance matrices are negligible when com-

pared to the cost of 1-NN search. Recall that 1-NN search is needed to compute the

specimens’ training errors (see Section 4.4.3). The difference in costs is due to the

following three reasons:

1. Error vectors are simply computed during classification by comparing predicted

and actual class labels. These are simple boolean operations with negligible cost.
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On the other hand, 1-NN search requires far more costly Euclidean distance

computations;

2. Distance matrices are computed by comparing error vectors and attributes/examples

sets, which are also simple boolean operations, and;

3. A distance matrix computation is a function of the population size NP (small

and constant), while 1-NN search is a function of the training set size (large

and variable).

The computational time cost of RK-GA0 remains unchanged with the adoption of

any IM-GA mating strategy because of the high costs of 1-NN search discussed in Sec-

tion 4.4.3. In other words, IM-GA Strategies 1 through 5 can be used in applications

of RK-GA0 to very large data sets while requiring minimal additional computational

overhead.

As for the storage cost, it also remains unchanged for the same reasons. Equa-

tion 4.19 shows that the additional cost of storing any of the NP × NP distance

matrices representing IM-GA’s “mating instincts”, plus NP error vectors of length

NET each, is negligible compared to that required by 1-NN search (recall NP is a

small constant for all data sets):

O(NET · NAT ) + O(NP
2) + O(NP · NET ) = O(NET · NAT ) (4.19)

The conclusion is that the computational costs of 1-NN search outweighs any costs

introduced by the use of IM-GA to optimize the baseline RK-GA0.
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4.5 Testbed Problem 2 - The Optimal Decision

Forests Problem

This section discusses how the the proposed IM-GA “instinct-based” mating strategies

are used to optimize genetic search in a second testbed problem of Optimal Decision

Forests, Testbed Problem 2. As was done for Testbed Problem 1, the discussion starts

with the design of a novel GA capable of discovering optimal ensembles of decision

trees (or decision forests). In addition, as in RK-GA0 for Testbed Problem 1, this

novel GA initially relies on the the conventional mating strategy to pair specimens

in the GA population for recombination. The conventional mating strategy is then

replaced by the IM-GA “instinct-based” mating strategies to further optimize the

genetic search for optimal decision forests.

A key factor in the design of a GA for the discovery of optimal decision forests is the

choice of the algorithm used to build the actual decision trees. While a few choices

exist in the Machine Learning literature, this work adopted the well-known C4.5

Decision Trees program developed in Quinlan (1993)’s famous work as the decision

tree builder. The C4.5 Decision Trees program was used by all ensemble learning

methods, genetic and non-genetic, recruited for empirical experiments with Testbed

Problem 2. The C4.5 Decision Trees program is a powerful decision trees builder. It

is also one of the most frequently adopted learning methods applied to supervised

classification problems. C4.5 Decision Trees uses the principle of “information gain

ratio” to decide upon the optimal splits (or tests) on attributes needed to build a
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decision tree model. C4.5 Decision Trees will be referred to as the “tree builder” for

the remaining of this work.

Recall from the discussions in Section 4.4 that the IM-GA mating strategies can-

not be used directly to solve search and optimization problems. This is because they

are not a complete GA, but only a step of the GA iterative search process (mating).

Hence, the first step in the process of evaluating IM-GA’s impact on genetic search

applied to Testbed Problem 2, is to design a good GA capable of finding good “en-

sembles of decision trees” (or decision forests). The same design requirement fulfilled

by the baseline RK-GA0 in Testbed Problem 1 applies here; this novel GA should ini-

tially adopt, and work reasonably well, with the conventional mating strategy. This

way, a good set of baseline experimental results on the performance of the conven-

tional mating strategy can be attained. These results can then be compared to those

attained by the application of the IM-GA “instinct-based” mating strategies in the

mating process of the novel GA.

In this work, the novel GA designed to search for optimal decision forests is called

TM-GA0. The acronym “TM ” is derived from the name of this novel GA’s designers,

namely, Thiago Quirino and Dr.Miroslav Kubat. TM-GA0 adopts many GA design

aspects from the framework of the original RK-GA (Rozsypal and Kubat 2003). For

example, TM-GA0 expands on the variable-length, value-encoded representation of

chromosomes in specimens that was pioneered in the original RK-GA to handle large

data sets. Recall that RK-GA represented each specimen as a pair of chromosomes

(example and attribute chromosomes) which combined encoded a single 1-NN classi-

fier. TM-GA0 expands on this scheme for “genetic encoding of classifiers” by adopting
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the use of multiple pairs of chromosomes per specimen. In TM-GA0, specimens rep-

resent decision forests and each chromosome pair in a specimen represents a different

C4.5 Decision Trees classifier in the ensemble. Furthermore, TM-GA0 also naturally

adopts the recombination and mutation operators developed for the original RK-GA

to handle the custom variable-length, value-encoded chromosomes.

Experiments with various data sets from the UCI Machine Learning Repository

discussed in Chapter 5 showed that TM-GA0 is a good GA capable of discover-

ing highly accurate and compact decision forests. TM-GA0 performed favorably

when compared to the state-of-the-art, classical approaches to ensemble learning

such as Bagging (Breiman 1996), AdaBoost (Freund and Schapire 1996), and Ran-

dom Forests (Breiman and Schapire 2001). TM-GA0 proved to be a good baseline

GA for investigating the impact of IM-GA “instinct-based” mating strategies on the

performance of genetic search applied to the Optimal Decision Forests problem.

The next few sections show how the five proposed IM-GA mating strategies were

incorporated into TM-GA0’s framework. The experiments presented in Chapter 5

confirmed that IM-GA can indeed accelerate TM-GA0 without impacting the quality

of the discovered decision forests. As was done for the baseline RK-GA0 in the

discussions of Testbed Problem 1, it is also shown theoretically that the IM-GA

mating strategies require negligible computational overhead when introduced into

TM-GA0. The end result is that IM-GA sped up TM-GA0 in Testbed Problem 2

without harming its performance under any criteria.

Finally, TM-GA0 will also be referred to as the baseline TM-GA0 since it relies

on the conventional mating strategy, just as the baseline RK-GA0. TM-GA0 is the
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baseline GA used to investigate the impact of the IM-GA mating strategies on the

optimization of Testbed Problem 2.

4.5.1 A Novel GA for Building Optimal Decision Forests, the

Baseline TM-GA0

The goal of the baseline TM-GA0 is to discover optimal decision forests while relying

on the conventional mating strategy. However, optimal decision forests are ensembles

of optimal decision trees. In turn, an optimal decision tree is simply a concept that

describes a highly accurate classifier having a model in the form of a decision tree

structure that is also as compact as possible in order to minimize classification costs

(i.e. average number of tests required to classify unknown examples) (Chikalov 2011;

Murthy and Salzberg 1995). Building optimal decision trees has for decades been

known to be an NP-Complete problem (Hyafil and Rivest 1976). That is, it is a

costly problem to solve for which no algorithm is currently known to solve it in

polynomial time (or “cheap” computational time). In supervised learning, classical

approaches to decision tree induction do not build optimal decision trees (i.e. both

accurate and compact decision tree models). The reason is that real-world data sets

have noise. Consequently, classical tree builders end up learning both the useful and

meaningless patterns available in their training data sets. The meaningless patterns

are reflected in the actual structure of decision trees as custom noisy “tests” that

make the decision trees unnecessarily larger (more extra nodes). The end result is

large decision trees having high classification costs and lower overall generalization

ability.



www.manaraa.com

149

One way to create optimal decision trees is through optimization (by an external

optimization tool) of the input parameters (data set and/or program arguments) that

are fed into a classical decision tree builder (i.e. the C4.5 Decision Trees program or

CART by Breiman et al. (1984)). This approach is very general and practical because

it makes use of existing algorithms for building decision trees instead of requiring

new ones to be custom-built into the chosen optimization tool. Classical decision

tree builders are limited in their ability to determine the optimal choice of input

parameters, such as the optimal subsets of examples and attributes from a training

data set (i.e. data noise reduction), that optimizes the decision tree building process.

Therefore, the optimization of the choice of input parameters must be undertaken by

a good external optimization tool. In this work, the external optimization tool is the

GA proposed in this section: the baseline TM-GA0.

What this discussion establishes is that TM-GA0 must simultaneously deal with

two major optimization tasks in order to build optimal decision forests; one task at

the decision trees level and the other at the ensemble (or decision forest) level. The

simultaneous optimization of both objectives is an NP-complete problem (Chandra

and Yao ):

• TM-GA0 must be able to optimize the individual decision trees making up

an ensemble (or decision forest) by building both accurate, less over-fit, and

compact decision tree models (optimal decision trees), and;

• TM-GA0 must be able to optimally group decision trees into ensembles in a

manner that the classification behaviors of the grouped decision trees “comple-
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ment” each other to achieve higher combined predictive power (optimal decision

forests).

TM-GA0 tackles optimization task 1 by simultaneously searching for the optimal

subsets of examples and attributes from a data set that optimizes the individual de-

cision tree building process. To tackle optimization task 2, TM-GA0 takes 2 steps.

First, it allows specimens to vary in size (i.e. contain arbitrary number of exam-

ple and attribute chromosome-pairs representing different decision trees) in order to

represent decision forests of arbitrary size. Second, TM-GA0 uses a novel “ensemble

diversity” measure called the “triplet-fault” measure in its novel fitness-function. The

novel “triplet-fault” diversity measure allows TM-GA0 to evaluate the quality of its

generated ensembles in terms of how well the grouped decision trees “complement”

each others’ classification errors. In this fashion, TM-GA0 seeks to find good solutions

to the Optimal Decision Forests problem.

Notice the natural connection between optimization objective 2 and the natural

principle of “opposites-attract” that inspired this research. The intuitive “mating

instinct” that can be derived from this connection above is that of the tendency of

specimens (or decision forests) in the GA population to mate with those that comple-

ment their classification behavior. This “mating instinct” promotes the utilization of

the genetic diversity (or available information) in the GA population, increasing the

chances for pairing of specimens whose children can potentially become more accurate

decision forests. It will be shown in the next sections how the IM-GA “instinct-based”

mating strategies achieve that.



www.manaraa.com

151

TM-GA0 expands on many design aspects from the original RK-GA. For example,

TM-GA0 adopts the same variable length, real-encoded chromosome representation

described in Section4.4.1. This is an important design choice because this partic-

ular chromosome representation pioneered by Rozsypal and Kubat (2003) greatly

decreased the computational costs associated with representing large data sets as

specimens in the GA. In the original RK-GA, each specimen had two chromosomes.

The chromosome-pair represented the attribute and example sets used to build a

unique 1-NN classifier. In contrast, TM-GA0 uses multiple pairs of chromosomes per

specimen. In TM-GA0, each specimen represents a different decision forest. More-

over, each of the multiple chromosome-pairs in a specimen represents the example

and attribute sets used to build a unique C4.5 Decision Trees classifier. The number

of chromosome pairs in a specimen, as well as the size of each chromosome, will vary

during the genetic search. This allows TM-GA0 to perform a simultaneous search for

both optimal decision trees which combined become optimal decision forests (having

optimal number of ensemble members). The proposed multi-chromosomal structure

of TM-GA0 specimens is illustrated in Figure 4.11:

Figure 4.11: Sample baseline TM-GA0 specimen with three example/attribute
chromosome-pairs encoding an ensemble of three C4.5 Decision Trees classifiers.

Figure 4.11 depicts a specimen with three chromosome pairs, which is equivalent

to a decision forest having three decision trees classifiers as members in an ensemble.

Each of the three chromosome pairs represent a subset (example and attributes) of
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the original training data set that will used to build a unique C4.4 Decision Trees

classifier. For instance, the first chromosome pair (from left to right) in Figure 4.11

“encodes” a decision tree built using training examples {2,9,15} whose values are

defined using attributes {1,3} only (all other attributes and examples in the train-

ing set are ignored). Similarly, the second chromosome pair “encodes” a decision

tree built using training examples {4,12,38,98} whose values are defined using at-

tributes {10,18,20} only. Also, the third chromosome pair “encodes” a decision

tree built using training examples {3,5,57} whose values are defined using attributes

{7,9,17,20} only. When this specimen is decoded into a decision forest, three differ-

ent C4.5 Decision Trees classifiers are built using the example/attribute sets defined

in the three chromosome pairs. Finally, when the resulting decision forest is used to

classify an example, which occurs either during the genetic search stage (to evaluate

the training set error of the decision forest and build its error vector) or simply dur-

ing the final evaluation stage (where the decision forest is evaluated on a separate

testing set for estimation of its generalization error), each of the decision trees in the

ensemble will classify that example to produce a class label. All of the class labels

are then combined using a simple majority voting scheme (as is done by the Bagging

classifier), where the “winning”class label is the one appearing most frequently. When

majority voting leads to a tie between two or more class labels, the “winning” class

label is then randomly chosen.
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The Novel “Triplet-Fault” Measure of Ensemble Diversity

Prior to mathematically defining TM-GA0’s fitness-function in the subsequent sec-

tion, let’s discuss a critical concept in the evaluation of the quality of decision forests

during genetic search. This key concept is known as the “ensemble diversity” (or

simply “diversity”), which was detailed in Section 3.4.3. The diversity indicates how

well the individuals members of an ensemble complement each others’ classification

behavior. When applied to the Optimal Decision Forests problem, the diversity indi-

cates whether the decision trees making up a decision forest tend to “err” on different

examples. In TM-GA0, optimization of the diversity among the decision trees making

up a decision forest is one of the main optimization objectives. In TM-GA0, the diver-

sity is measured as a term in the fitness-function. The diversity term guides TM-GA0

in the discovery of optimal groups of decision trees that tend to “err” on different

examples. That is, it promotes the optimal grouping of decision trees whose combined

predictions have higher predictive power than that of any individual decision tree in

the ensemble. The end result is the discovery of optimal decision forests.

In this research, rigorous experiments were performed to investigate the impact

of various diversity measures found in the literature (Kuncheva 2003) on the per-

formance of TM-GA0. The conclusion attained from these experiments was that an

optimal “ensemble diversity” measure for the GA is one that does not penalize an

ensemble for the individual imperfections (misclassifications) of its members as long

as the overall ensemble accuracy is not impacted by these imperfections. Such a

diversity measure provides the GA with a very “subtle hint”, or an implicit sugges-
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tion, that it is acceptable for the individual members of an ensemble to have some

degree of misclassifications, but only as long as when combined, they will comple-

ment each other in a way that their majority vote correctly classifies any example.

This “subtle hint” helps prevent the GA from over-fitting the individual classifiers

because it implicitly (versus explicitly) promotes the existence of classification errors

in the individual classifiers of an ensemble. Furthermore, it also allows the GA to

consider diverse grouping of classifiers whose “complementary” classification behavior

also reflect their diverse model structures.

Unfortunately, none of the existing “ensemble diversity” measures found in the

literature seem to provide the GA with this “subtle hint.” This issue stems from the

fact that the existing diversity measures were not designed for use in the process of

building individual classifiers, but rather on the process of grouping pre-built classi-

fiers into ensembles (Kuncheva 2003). The ensemble generation techniques employing

existing diversity measures are based on an overproduced-and-select paradigm, where

a pool of classifiers is first generated using some existing technique (such as Bagging

or AdaBoost) and a subset of the built classifiers are then grouped in a fashion that

optimizes some diversity measure. However, when the existing diversity measures

are applied to the process of simultaneously building classifiers and grouping them

into ensembles, such as is accomplished by TM-GA0, they fail to reflect that the

imperfections of the individual members of an ensemble will not adversely impact

the quality of an ensemble’s predictions in every scenario. That is, the individual

members’ imperfections should count as penalties in the diversity measure only when

their combined imperfections actually lead the ensemble to produce misclassifications.
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Otherwise, from the ensemble point of view, the individual members’ imperfections

are harmless.

Let’s discuss, for example, the impact of some of the diversity measures presented

in the literature on the genetic search of TM-GA0. The results discussed here were

determined after rigorous experimentation with these measures on various UCI data

sets. Note that diversity measures assign a diversity value to an ensemble. Therefore,

when applied in TM-GA0, diversity measures assign a diversity value to each specimen

on the GA population. The two diversity measures considered here are pairwise mea-

sures. Pairwise diversity measures compute some metric for between every possible

pair of members in an ensemble and then averages the results over the total number of

possible pairs. Therefore, when pairwise measures are applied to TM-GA0, a metric

is computed between every possible pair of decision trees making up a decision forest,

and then the results are averaged over the total number of decision tree pairs in the

forest. The resulting diversity value is used as term in TM-GA0’s fitness-function.

The two measures considered here are:

1. The average pairwise Hamming distance between the error vectors of every pair

of classifiers making an ensemble, which counts the number of “01” and “10”

value-pairs in every possible pair of error vectors (and ignores the value-pairs

“00”, “00” and “11”), averaged over the total number of possible classifier pairs.

This measure is to be “maximized” by the GA, and;

2. The double-fault measure between the error vectors of every pair of classifiers

making an ensemble, which counts the number of “11” value-pairs in each pair
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of error vectors (and ignores the value-pair combinations “00”, “01”, and “10”),

averaged over the total number of possible classifier pairs. This measure is to

be “minimized” by the GA.

Let’s start with diversity measure 1 above, the Hamming distance. Seeking to

maximize this measure in TM-GA0’s fitness-function for all specimens lead to the

discovery of decision forests having decision trees with large classification errors. This

is an intuitive result explained by the fact that the Hamming distance between a pair

of error vectors from two different decision trees does not take into account how the

misclassifications of the individual trees actually impact the ensemble predictions.

The Hamming distance diversity measure is maximized when the error vectors of

the decision trees making up the ensemble have orthogonal errors (disjoint errors on

different examples). This is a major roadblock to the optimization of the accuracy

of the decision trees by the GA because this measure explicitly requires large errors

in the trees to exist in order to maximize the Hamming distance. In summary, the

Hamming distance diversity measure completely ignores the impact that large errors

in the decision trees have on the overall accuracy of the resulting decision forest.

In contrast, seeking to minimize the diversity measure 2 in TM-GA0’s fitness-

function, the “double-fault” measure, led to the discovery of highly over-fit decision

trees, and consequently, also decision forests with very poor generalization ability.

Again, this is a very intuitive result that follows from two observations. First, the

double-fault measure does not take into account that an example may be correctly

classified by an ensemble even when a few individuals pairs of decision trees in a forest
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misclassifies the example. Moreover, because the double-fault measure is so highly

correlated to the classification error (it considers only the “11” error pattern between

pairs of error vectors), it can lead TM-GA0 to favor ensembles having decision trees

that highly over-fit the training set. it was observed that the double-fault measure

biased TM-GA0 toward building ensembles with small number of trees. There were

two reasons for this behavior. First, TM-GA0 attempted to reduce (minimize) the

number of “11” error patterns among pairs of error vectors by building highly accurate

decision trees. However, classification accuracy is measured on the training set during

genetic search, therefore, the generated decision trees are highly over-fit. Second, TM-

GA0 will tend to optimize the double-fault measure by also very quickly dropping

the worst decision trees from the decision forests to improve the average error of

the decision trees. The conclusion is that the double-fault measure alone does not

promote the improvement of the decision trees in TM-GA0. The double-fault measure

frequently led the TM-GA0 to converge the population to decision forests having small

number of decision trees by quickly dropping the number of decision trees in the

decision forests and over-fitting the resulting decision trees to reduce their training

set classification error. Consequently, the generated decision forests exhibited very

poor generalization error.

The discussion above illustrate the main issues encountered from the application

of ensemble diversity measures presented in the literature in the genetic search for

optimal classifier ensembles. To mitigate these issues, this work proposes a novel

ensemble diversity measure called the “triplet-fault” measure that is to be minimized

by the GA. The triplet-fault diversity measure is a triplet-wise measure, in contrast



www.manaraa.com

158

to the pairwise measures commonly proposed in the literature. The triplet-fault mea-

sure considers the classification behavior of every possible combination of 3 classifiers

in an ensemble (or sub-ensembles of 3 classifiers). Furthermore, the triplet-fault mea-

sure only penalizes the imperfections of individual ensemble members when those

imperfections actually impact the overall accuracy of the individual sub-ensembles.

In other words, harmless classification error from part of the individual members of a

sub-ensemble are ignored as long as these errors do not impact the predictive power

of the sub-ensembles. Consider, for example, an ensemble with M classifiers as mem-

bers. The total number “c” of unique combination of 3 classifiers is the binomial

coefficient (Kreyszig 1999) given by Equation 4.20:

c =
M !

(M − 3)! · 3!
(4.20)

For example, a decision forest having 5 decision trees have 10 unique combinations

of 3 decision trees (or sub-ensembles). For each of these 10 (or c) sub-ensembles, the

triplet-fault measure counts the total number of “110”, “101”, “011”, and “111” value-

triplets found in the corresponding error vectors decision trees making up the sub-

ensemble. The total count is then averaged over the total number of sub-ensembles

(which is 10 in this case). This is equivalent to counting the average number of ex-

amples misclassified by at least 2 or more decision trees in each sub-ensemble that

can be created from the original 5 decision trees making up the parent decision for-

est. Notice how error vector value-triplets “000”, “001”, “010”, and“100” are simply

ignored in the count. These specific value-triplets do not count against classification
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performance because they represent combination of 3 decision trees (or sub-ensemble)

that correctly classified an example even though 1 out the 3 classifiers misclassified

that example. That is, as long as the classifiers in a sub-ensemble can complement

each others’ errors to attain higher predictive power, the individual errors can be

deemed harmless.

The above are crucial considerations for the success of TM-GA0 in optimizing

Testbed Problem 2. This is because the triplet-fault measures promotes the discov-

ery by TM-GA0 of decision forests made up of decision trees having diverse model

structures. The diversity in the decision trees model structures is reflected by the

acceptance of TM-GA0 of certain classification error patterns among decision trees as

harmless (e.g. “000”, “001”, “010”, and“100”). This is achieved by using the triplet-

fault measure as a term in fitness-function and attempting to minimize it. Notice

that to minimize the triplet-fault measure, TM-GA0 does not have to discover highly

over-fitted classifiers (as required by the double-fault measure) or classifiers having

large errors (as required by the Hamming distance). Instead, TM-GA0 simply has

to discover classifiers that are accurate enough to complement each others’ classifi-

cation errors when combined into sub-ensembles of three classifiers. Consequently,

TM-GA0 is able to consider certain grouping of decision trees into ensembles (or deci-

sion forests) that would otherwise be completely ignored had other ensemble diversity

measures been adopted, such as those listed in the literature.

In summary, the novel “triplet-fault” diversity measure proposed in this work

provides the GA with a “subtle hint” that none of the other diversity measures in the

literature have so far provided: the errors of individual members of an ensemble are
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not always harmful to the overall ensemble predictive power and those imperfections

should be considered only when they impact the overall ensemble accuracy. This

approach helps prevent the over-fitting of the individual classifiers during the genetic

search and promotes more diverse combinations of classifiers into ensembles.

Specimen Fitness Evaluation

As in the original RK-GA, TM-GA0 also utilizes the weighted sum approach described

in (Coello 1999) to transform the complex, multi-objective optimization problem com-

posed of (1) maximizing the classification accuracy of the decision forests (specimens

in the GA population) and (2) discovering decision trees that are both highly accurate

and compact, into a single-objective optimization problem.

Let’s start the discussion by assuming that TM-GA0 is attempting to find an

optimal decision forest for an optimization problem based on a training data set

having a total of NET training examples described by NAT total attributes. Now,

let’s also consider an arbitrary specimen (or decision forest) in TM-GA0’s population

having a total of k decision trees as members in the ensemble. These k decision

trees have many important properties that are relevant to their accuracy and model

complexity. For example, let these k decision trees have a combined total of Nn

decision nodes (where “n” stands for “nodes”). Also let the k decision trees require a

combined total of Nt tests (where “t” stands for “tests”) to classify all NET examples

in the training data set during the fitness evaluation process. Furthermore, let the

combined total number of training examples misclassified by the k individual decision

trees be Ec (where “c” stands for “classifiers”). Similarly, the ensemble as a whole also
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has some important properties that are relevant to its accuracy and model complexity.

For example, let the total number of examples misclassified by the decision forest

(ensemble) be Ee (where “e” stands for “ensemble”). Moreover, let the total number

of unique attributes used to build the ensemble from among the NAT original training

attributes be Na (where “a” stands for “attributes retained”). Na is measured as the

set size of the union of the k attribute chromosomes in the specimen. Finally, let D be

the “D iversity” value of the specimen assigned by the novel “triplet-fault” measure

that was introduced in the previous section. Considering all these properties, the

fitness-function of TM-GA0, fTM-GA0
, is defined by Equation 4.21.

fTM-GA0
=

1

[c1 · Ee + c2 · Na + c3 · D] + [c4 ·
Ec

k
+ c5 ·

Nn

k
+ c6 ·

Nt

k·NET
]

(4.21)

To define the conditions under which fTM-GA0
= 0, let’s first define another variable

Ne the total number of unique example used to build the ensemble from among the

NET original training examples (where “e” stands for “examples retained”). Ne is

measured as the set size of the union of the k example chromosomes in the specimen.

Note that minimizing Ne is not an optimization objective in TM-GA0 for Testbed

problem 2, hence, it is not present in Equation 4.21. However, the value of Ne is

used as a test to determine when fTM-GA0
= 0. The value of Equation 4.21 is zero

(fTM-GA0
= 0) when Ne = 0, since no meaningful classifier ensemble can be built from

“0” examples.

Now, let’s understand what the terms in Equation 4.21 mean. The first three

terms in the denominator of Equation 4.21 (purposely placed inside the first pair of
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brackets) can be categorized as “ensemble-related” terms. This is because these terms

are measures of ensemble classification error, complexity, and diversity, respectively.

These terms guide the optimization by the GA of the overall ensemble properties

(accuracy and model complexity). The remaining three terms inside the second pair

of brackets can be categorized as “decision trees-related” terms because they guide

the optimization by the GA of the individual decision tree classifiers making up the

ensemble. For example, the first term inside the second pair of brackets corresponds to

the average number of examples misclassified by all k decision trees (the average error

of the trees). The second and third terms measure the complexity of the discovered

decision trees. The second term corresponds to the average number of nodes in the k

decision trees and the third term corresponds to the average number of tests required

by the k trees combined (or by the ensemble) to classify an arbitrary training example.

Again, notice that the fitness-function of TM-GA0 does not include any terms

related to the size of the examples set used to build the decision trees or ensemble (Ne).

That is because it is left up to the genetic search to find the optimal subset of examples

that optimize the decision trees. In contrast, in Testbed Problem 1, the minimization

of the example set was one of the the baseline RK-GA0’s main optimization objective.

That is because optimizing the 1-NN classifier actually requires the minimization of

the examples set in order to reduce classification costs and eliminate noisy examples

that impact classifier accuracy.

As for the sensitivity of TM-GA0’ performance to each of the six terms in Equa-

tion 4.21, rigorous experimentation has revealed that TM-GA0 is mostly sensitive to

the diversity term “D”, which is a specimen’s diversity value assigned by the triplet-
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fault diversity measure. Removal of the diversity term “D” from Equation 4.21 leads

TM-GA0 to discover highly over-fit decision forests with poor generalization abilities.

This is an intuitive result because the diversity term “D” competes against other two

terms: 1) the ensemble error and 2) the average error of the k decision trees. The

combination of the three terms (diversity, ensemble error, and average decision trees

error) promotes a balanced search for simultaneously accurate and diverse ensembles

by the GA. When the diversity term “D” is removed from Equation 4.21, no other

terms can compete against the combined terms of ensemble error and average error

of the k decision trees. Notice that both terms are correlated to the classification er-

ror. Consequently, the genetic pressure exerted by these combined terms on TM-GA0

leads to the discovery of decision trees that are highly over-fit to the training set,

since the generalization error of a decision forest is estimated from the training set

error during the genetic search. Therefore, in conclusion, the optimal performance

of Equation 4.21 is attained when all three terms (diversity, ensemble error, and

average decision trees error) compete in the fitness-function.

As for the weights c1 . . . c6, their values are all set to “1.” This choice of weight

values is dependent on the initial conditions of the example and attribute chromo-

somes of every specimen (the initial amount of data available to build the decision

trees). To understand this dependency, let’s first discuss the choice of initial condi-

tions for the specimens’ chromosomes in TM-GA0Ṫhrough rigorous experimentation,

this research found that the genetic search for optimal decision forests works best

when the decision trees are built from bottom up. That is, when the GA search

starts with small and relatively inaccurate decision trees, which is achieved by filling
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the example chromosomes with a small number of examples. This initial conditions

provides 2 main advantages: 1)the initially small decision trees have not yet over-fit

the training data set, and 2)more independent examples are left in the training data

set to evaluate the discovered decision forests, which makes the training set error

(used in fitness evaluations) a good indicator of the true generalization error of the

discovered decision forests. Through the use of this initial conditions, the GA is able

to simultaneously improve the decision trees and forests over many generations by

carefully considering, right from the start of a run, the optimal subsets of examples

and attributes that should be used to induce the most accurate and compact decision

trees and forests.

On the other hand, had the specimens been initialized instead with large number

of examples in their chromosomes, the initial decision trees would have been much

larger. Consequently, they would also have relatively low initial training set errors and

would have over-fit the training set from the start. This is a “bad” initial condition

because it makes the training set classification error a poor indicator (i.e. a very

optimistic indicator) of the true generalization error of the decision trees and forests.

Under such initial conditions, the GA would not be able to build optimal decision trees

because the highly over-fitted initial decision trees would not be easily broken down

into smaller ones without impacting their initially high (and misleading) training set

classification accuracies. This would result from the presence of meaningless, noisy

test patterns in the decision trees that fit the noise in the training data set. This issues

was confirmed in this research through rigorous experimentations performed with the
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goal of determining the most optimal initial conditions for the chromosome-pairs in

the specimens of TM-GA0’s population.

Now, having discussed the optimal choice of initial conditions for TM-GA0, let’s

return to the issue concerning the value of the weights c1 . . . c6. The values of these

weights are all set to “1” because the initial values of the terms of the fitness-function

(given by Equation 4.21) already provide “natural weights” through their initial

extreme opposite values. Recall from the discussion above that TM-GA0 initializes the

specimens’ chromosomes with small amounts of examples, sufficient only to trigger the

genetic search. What this also implies is that initially, the GA population is composed

of specimens (or decision forests) having: 1)high ensemble error rates, 2)high average

decision trees error rate, and 3)poor diversity (due to many classification errors). All

these properties correspond to terms in Equation 4.21 having initially high values.

On the other hand, this also implies that the remaining terms in Equation 4.21

have very low values. For example, small decision trees have small number of nodes

(possibly being composed of single leaves) and require small average number of tests

to classify any example. These initial conditions of the terms in Equation 4.21 were

found experimentally to be the most optimal because it initially sets different terms

in the fitness-function at extreme opposite values. As the GA is run, the genetic

search then proceeds to slowly balance out the terms in Equation 4.21, carefully

considering the optimal subsets of examples and attributes needed to build the most

accurate and compact decision trees. As result, no other weights are needed for any

of the terms in Equation 4.21.
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In summary, the fitness-function presented in this section is a good recipe for

building optimal decision forests. All of the terms of the fitness-function given by

Equation 4.21 reflect a set of optimization objectives that have been regarded in

the literature as fundamental for the discovery of optimal decision forests. These

optimization objectives provide a balance between the relative importance of classifi-

cation accuracy and model structural complexity (or size) both at the ensemble level

and also at the level of individual decision trees.

Recombination

Recombination is the process of selecting parent specimens to mate and generate new

children through crossover (exchange of genetic information between parent chromo-

somes). In TM-GA0, recombination takes place at the decision trees level through

the following five steps:

1. Parent-pairs (decision forests) are chosen randomly;

2. For each parent-pair, their decision trees are merged into a single pool;

3. The decision trees in the pool are randomly paired;

4. The paired decision trees are recombined to generate new decision trees (chil-

dren), and;

5. The children trees are randomly grouped into two new decision forests.

The first step is mating (selecting pairs of parents to mate)). Assume TM-GA0

has a population of NP specimens (or decision forests). At each iteration of TM-GA0,
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NP /2 pairs of parents are selected randomly based on fitness. The parents are selected

probabilistically using the wheel-of-fortune based scheme given by Equation 4.7, just

as was done in the original RK-GA. This specimen pairing scheme is the conventional

mating strategy that IM-GA seeks to replace.

Then, steps 2, 3, and 4 are applied in sequence to each parent-pair chosen randomly

in Step 1. For each chosen parent-pair, the second step involves creating a pool of

decision trees containing all the decision trees from the chosen parent decision forests.

The third step involves randomly shuffling the decision trees in the pool and pairing

them up sequentially. Note that if the number of decision trees in the pool is odd,

one of the decision trees will end up without a mating partner. In such cases, the

decision tree without a mating partner is paired randomly with another tree in the

pool. A decision tree in the pool never mates with itself, unless: 1)the parent decision

forests correspond to the same specimen due to the random selection, or 2) the parent

decision forests happen to have exact duplicates of the same decision trees. The

first scenario will occur more often than the second scenario due to the use of the

conventional mating strategy. Notice also that in this scheme, decision trees coming

from the same parent specimen can mate with each other as well as with decision trees

coming from other parents. This design choice makes the best use of the diversity

(information) available in the pool by using all decision trees in the recombination

process.

The fourth step involves generating children decision trees by recombining the

parents decision trees that were paired randomly in the previous step. Recall that

in TM-GA0 each decision tree is represented as a chromosome-pair (attribute and
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example chromosomes), just as in the original RK-GA each chromosome-pair repre-

sented a unique 1-NN classifier. Therefore, the same two-point cross-over operation

employed in the original RK-GA to generate new 1-NN classifiers is also applicable

in TM-GA0 to generate new decision trees. The two-point crossover scheme referred

here was illustrated in Figure 4.10 for a single chromosome.

Finally, step 5 involves randomly grouping the generated children decision trees

into two new children decision forests. Hence, the size of the children decision forests

must be determined. Let N ’ be the the size of the original pool of parent decision

trees, that is, the sum of the number of decision trees in the parent decision forests.

A Gaussian distribution is then created with mean value N/2 (the average size of

the parent decision forests) and ranging from 0 to N . A number n is then randomly

picked from the Gaussian distribution. The first child decision forest will have the first

n children decision trees and the second child decision forest will have the remaining

N − n child decision trees. The goal of this scheme is to promote moderate changes

in the size of the specimens (decision forests) in the GA population, since most of

the time the Gaussian distribution will lead to balanced sized forests that deviate

little from the mean of the distribution. This allows the genetic search to slowly

search for optimal decision forests of varying sizes. Other probability distributions,

such as the uniform distribution ranging from 0 to N were investigated. However,

random numbers picked from the uniform distribution frequently diverge from the

mean (N/2), producing decision forests of unbalanced sizes when compared to the

size of the parent decision forests. The use of the Gaussian distribution lead to the

best experimental result.
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Mutation

In each generation of TM-GA0, mutation is applied to the decision trees making up

each of the generated children decision forests. For each child decision forest, the

mutation operator is applied independently to its decision trees. For each decision

tree, the mutation operator randomly selects a specified percentage of the “alleles” (or

fields) in both the example and attribute chromosomes of each decision tree and adds

to them a randomly generated integer. The final mutated values are then modulo the

total number of examples or attributes. This confides the final mutated values to a

valid range that is data set relevant. The mutation rate chosen for TM-GA0 is the

same rate used in the original RK-GA: 5%. This mutation rate worked well for all

experiments with UCI data sets.

Population and Survival

In TM-GA0, the GA population size was fixed to a total of 60 specimens. Compared to

the original RK-GA, this population size is twice as large. The reason is that Testbed

Problem 2 is more complex than Testbed Problem 1. This is evident from the fact

that a specimen in TM-GA0 represents a decision forest with arbitrary number of

decision trees. In contrast, a specimen in the original RK-GA represents a single

1-NN classifier. The search space of Testbed problem 2 is thus much larger than

that of Testbed Problem 1 because combinations of decision tree classifiers must

be considered. Consequently, TM-GA0 requires a larger number of specimens than

RK-GA to efficiently perform the genetic search for optimal decision forests. Notice

that the increase in population size is, however, negligible when compared to the
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differences in search space size. This fact illustrates one of the main advantages of

genetic search: its ability to search through vast spaces of solutions with minimal

computational requirements.

The population was initialized with 60 specimens at the beginning of the GA

search process. Each of the 60 specimens were initialized with 7 random decision

trees. Experiments showed no benefit from initializing the specimens with larger

number of decision trees. At each generation, the size of the decision forests in the

population varied due to the recombination process discussed above. The acceptable

range of size for a decision forest was between 3 and 7 trees. The lower boundary

for this range was chosen because of three reasons. First, decision forests having a

single decision tree were never found to outperform larger decision forests, which is

an intuitive result. Second, in decision forests having two decision trees, the decision

trees were never able to complement each other’s classification errors. These decision

forests consistently lead to high number of class label ambiguities during the voting

process. This means that the “winning” class label was frequently selected randomly.

The third reason for requiring at least 3 decision trees per decision forest was that

the triplet-fault diversity measure requires at least three decision trees.

The chromosome-pairs of each of the 7 decision trees in the 60 specimens making

up- the population were initialized (their attribute and example chromosomes filled)

with 1% of randomly selected training data examples and all attributes. The random

values were picked from the uniform distribution over the range of the number of

examples and attributes, respectively. This is the same initialization choice used in
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the original RK-GA. The initial small amount of data in the chromosomes allows the

GA to build optimal decision trees from the ground up.

Finally, in each new generation, 60 children specimens (decision forests) are gener-

ated, then merged with the original/surviving population. Finally, all decision forests,

new and old, are then sorted by rank of fitness. The principle of survivor selection

elitism (Bentley 1999) is then used to ”kill-off ” the worst half specimens, just as was

done in the original RK-GA.

Termination Criterion

In each experiment, TM-GA0 was run until no further improvement to the population

fitness could be achieved. This is a different termination criteria than the one used in

the original RK-GA, in which the GA was run for a max of 100 generations. Generally,

TM-GA0 run for anywhere between a few hundred generations (on smaller UCI data

sets) to a much as 10,000+ generations (for larger UCI data sets) in order to discover

optimal decision forests. This difference in the termination criteria further supports

the fact that Testbed Problem 2 is more complex than Testbed Problem 1; TM-

GA0 spent much more effort in search of optimal decision forests (i.e. optimization

of classifier ensembles) than the baseline RK-GA0 spent in search of optimal 1-NN

classifiers (i.e. optimization of a single classifier).

TM-GA0 runs on UCI data sets were stopped when the fitness value of the top-

fitness specimen of the population became stagnant (e.g. did not improve further)

for at least 1000 generations. This fitness stagnation threshold performed well on all



www.manaraa.com

172

experiments with the UCI data sets. This stopping criteria ensured that TM-GA0

had ample search time to find stable solutions to Testbed Problem 2.

At the end of each TM-GA0 run, the specimen (decision forest) having the lowest

classification error was selected as the “winner.” Most of the time, this specimen was

also the top-fitness specimen in the population. Finally, the “winner” decision forest

was then evaluated on the testing set in order to obtain an estimate of the gener-

alization error of the optimal solution discovered by TM-GA0 for Testbed Problem

2.

4.5.2 The Computational Costs of the Baseline TM-GA0

The computational costs of both time and storage of the baseline TM-GA0 are dom-

inated by the costs associated with the fitness evaluation process: decision tree in-

duction accompanied by its evaluation on the training data set. This is a similar

scenario to that of the original RK-GA (as well as the baseline RK-GA0), except

that RK-GA’s computational costs were dominated simply by the nearest-neighbor

search required to evaluate the accuracy of the generated 1-NN classifiers (the 1-NN

classifier requires no induction). In TM-GA0, during the fitness evaluation process,

where the quality of the newly generated children decision forests is evaluated ac-

cording to Equation 4.21, all of the decision trees making up the children decision

forests have to be induced by the C4.5 Decision Trees program. Once they have been

induced, they must also be evaluated on the training data set so that the ensemble

error of the children decision forests can be computed. The resulting ensemble error

values are then used in Equation 4.21. All of the other components of the GA
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search process (i.e. mating, recombination, mutation, survival) add only negligible

cost compared to the cost of inducing multiple decision trees per iteration of TM-GA0

using the C4.5 Decision Trees program. The importance of examining the computa-

tional costs of TM-GA0 is to ensure that the benefits of using the proposed IM-GA

mating strategies are not outweighed by additional computational costs.

To derive the computational time cost of the decision tree induction process,

let’s consider the worst-case scenario of a decision tree that is to be built from the

chromosome-pair of a specimen in TM-GA0 that contains all NET examples and NAT

attributes from a large training data set. Also, assume that the training data set is

composed entirely of NAT numerical attributes, which are more costly for induction

than nominal attributes because of required sorting procedures. Moreover, some as-

sumptions about the size of the decision tree have to be made. Assume the worst-case

scenario of a decision tree having NET leaves. The standard depth of a decision tree

having NET leaves is in the order of log(NET ) (I. Witten 2011). Now, in the worst-

case scenario, at each of the possible depths of the induced decision tree, all NAT

attributes must be considered along with all NET examples. Since the depth of the

tree is assumed to be in the order of logNET , the computational time cost of inducing

the decision tree is given by Equation 4.22, where DTInduction stands for “Decision

T ree I nduction”:

T imeCost(DTInduction) = O(NET · NAT · log(NET )) (4.22)
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Now, let’s compute the cost of evaluating the induced decision tree on the training

data set. Given NET training examples and a decision tree depth in the order of

log(NET ), the computational time cost of evaluating the induced decision tree is

given by Equation 4.23, where DTEvaluation stands for “Decision T ree Evaluation”:

T imeCost(DTEvaluation) = O(NET · log(NET )) (4.23)

Assuming both large number of examples and attributes in the training data

set, the total computational time cost associated with the induction and subsequent

evaluation of the decision tree on the training data set is given by Equation 4.24:

T imeCostTotal = O(NET ·NAT ·log(NET ))+O(NET ·log(NET )) = O(NET ·NAT ·log(NET ))

(4.24)

Similarly, let’s consider the computational storage cost associated with storing the

test nodes and leaves of the induced decision tree. For numerical attributes, let the

branching factor 32 of each test node be “2”. Thus, given that the depth of the induced

decision tree is in the order log(NET ), the computational cost of storing the nodes in

the decision tree is given by Equation 4.25:

StorageCostNodes = O(2log(NET ) − 1) = O(NET ) (4.25)

32The branching factor is the maximum number of values that an attribute can take on when
used as a test node in a decision tree. For example, in the C4.5 Decision Trees program, test nodes
corresponding to numeric attributes can take on only 2 possible values, thus the branching factor is
“2”.
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Finally, the total computational cost of storing the test nodes plus the NET leaves

of the induced decision tree is given by Equation 4.26:

StorageCostTotal = O(NET ) + O(NET ) = O(NET ) (4.26)

In summary, the computational time cost of TM-GA0 is dominated by the decision

tree induction process required for fitness evaluation of the generated children decision

forests, as illustrated in Equation 4.24. Also, the computational storage of TM-

GA0 increases proportionally to the number of examples in the training data set, as

illustrated by Equation 4.26.

4.5.3 Improving the Baseline TM-GA0 with IM-GA: TM-
GA2, TM-GA4, and TM-GA5

In Testbed Problem 2, the impact of IM-GA Strategies 2, 4, and 5 on the performance

of TM-GA0 were investigated only. As will be discussed in Chapter 5, the results for

Testbed Problem 1 revealed that all IM-GA strategies indeed succeeded in leading

RK-GA0 to faster convergence and that such was attained without impacting the

quality of the generated solutions. However, from among the four single-population

IM-GA mating strategies, IM-GA Strategies 2 and 4 performed better than their

counterparts Strategies 1 and 3, respectively, when applied in Testbed Problem 1.

This means that the fitness-based deterministic selection of the first parents in each

mating pair performed better than the random selection. Moreover, since IM-GA

Strategy 5 is the multi-population “flavor” of IM-GA, it was also imperative to also
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retain this strategy as a representative IM-GA mating strategy for the experiments

with TM-GA0 in Testbed Problem 2.

For the purposes of evaluating the impact of the chosen IM-GA mating strategies

in the optimization of TM-GA0, the following 3 GAs are defined:

• TM-GA2: Let this be a new GA resulting from the adoption by TM-GA0 of

IM-GA single-population Strategy 2 in its mating process;

• TM-GA4: Let this be a new GA resulting from the adoption by TM-GA0 of

IM-GA single-population Strategy 4 in its mating process, and;

• TM-GA5: Let this be a new GA resulting from the adoption by TM-GA0 of

IM-GA multi-population Strategy 5 in its mating process.

These five different configurations of the baseline TM-GA0 will be referred to in

the experimental section. It is important to note that for TM-GA5, the original

single population of TM-GA0 with 60 specimens was split into three equally sized

populations, each having 20 specimens. This modification was done to ensure that

all IM-GA mating strategies run with the same total number of specimens in the GA

population.

4.5.4 The Computational Costs of the Baseline TM-GA0 with
IM-GA

It is imperative that the benefits of the IM-GA “instinct-based” mating strategies

to the baseline TM-GA0 are not outweighed by additional computational costs. In

other words, the computation of the distance metrics representing IM-GA’s “mating



www.manaraa.com

177

instincts” should require only negligible additional computational costs when com-

pared to TM-GA0.

Recall from the discussion in Section 4.4.5 that the IM-GA mating strategies re-

quire negligible additional computational time for simple boolean operations. Hence,

just as in the case of RK-GA0, the computational time cost of the TM-GA0 remains

unchanged with the adoption of any IM-GA mating strategy because of the high

costs of decision tree induction required by the fitness evaluation process, as was dis-

cussed in Section 4.5.2. In other words, IM-GA Strategies 1 through 5 can be used

in applications of TM-GA0 to very large data sets while requiring minimal additional

computational overhead.

As for TM-GA0’s computational storage cost, it also remains unchanged with the

use of the IM-GA mating strategies. Let NP be the number of specimens in TM-

GA0’s population, where NP is a small constant for all data sets. Also, let NET

and NAT be the total number of examples and attributes in the training data set,

respectively. Equation 4.27 shows that the additional cost of storing any of the

NP × NP distance matrices representing IM-GA’s “mating instincts”, plus NP error

vectors of length NET each, do not change the overall computational storage costs of

TM-GA0 (NET ≫ NP for all data sets):

O(NET ) + O(NET ) = O(NET ) (4.27)

The conclusion is that the computational costs of decision tree induction outweighs

any costs introduced by the use of the IM-GA mating strategies to optimize TM-GA0.
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Empirical Evaluation of the IM-GA
Mating Strategies

This chapter is devoted to presenting the results of the rigorous experiments that were

performed to evaluate the impact of the proposed IM-GA “instinct-based” mating

strategies on genetic search applied to Testbed Problems 1 and 2.

Section 5.1 presents the experimental results for Testbed Problem 1. The results

compare the performance of (1) the baseline RK-GA0 with the conventional mating

strategy versus (2) the baseline RK-GA0 with the IM-GA mating strategies (see

Section 4.4.4). In addition, the same section also compares the performance of RK-

GA0 against that of well-established, GA-based and non-GA-based techniques for

solving Testbed problem 1.

Section 5.2 presents the experimental results for Testbed Problem 2. The results

compare the performance of (1) the baseline TM-GA0 with the conventional mating

strategy versus (2) the baseline TM-GA0 with the IM-GA mating strategies. More-

over, the same section also compares the performance of TM-GA0 against that of the

well-established ensemble learning techniques of Bagging, AdaBoost, and Random

Forests for solving Testbed problem 2.

178
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5.1 Performance of IM-GA in Testbed Problem 1

The experimental results presented in this section support the following three claims

about the impact of the proposed IM-GA mating strategies in the baseline RK-GA0

when applied to Testbed Problem 1:

1. Faster Convergence: The IM-GA “instinct-based” mating strategies RK-GA0

to faster convergence in Testbed Problem 1.

2. Improved Quality of Solutions: The IM-GA “instinct-based” mating strategies

occasionally improve the accuracy of the 1-NN classifier induced by RK-GA0 and

do not impact its quality along any of the following two criteria: a)percentage

of examples retained, and b)ability to remove noisy/irrelvant attributes.

3. RK-GA0 outperforms other GA-based and non-GA-based techniques to solving

Testbed 1 Problem along all the following criteria: a)classification accuracy,

b)percentage of examples retained, and c)ability to remove noisy/irrelvant at-

tributes. This establishes that the baseline RK-GA0 is not a weak GA and that

the improvements achieved by the application of the IM-GA mating strategies

in RK-GA0 are real improvements.

Section 5.1.1 presents the UCI benchmark data sets used in all experiments with

Testbed Problem 1. Section 5.1.2 list all the techniques, GA-based and non-GA-

based, used in the experiments and discusses the parameters used to tune all the

techniques for their best performances. Then, results for the convergence speed, which

is the main performance criteria used to evaluate the impact of the IM-GA mating
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strategies in Testbed problem 1, are presented in Section 5.1.3. The experimental

results reported in Section 5.1.4 show that the improvements in convergence speed

achieved by the IM-GA mating strategies were not achieved at the cost of other

performance criteria. Finally, the same section also shows that RK-GA0 outperforms

other well-established, GA-based and non-GA-based techniques for solving Testbed

Problem 1 along the various performance criteria discussed in Section 2.3.

In those result tables comparing the performance of RK-GA0 with and without

“instinct-based” mating, the bullet symbol (”•”) indicates that the value achieved

by an IM-GA strategy is statistically better than that achieved by the conventional

mating strategy. Conversely, the checkbox symbol (”⊠”) identifies those cases where

IM-GA performed statistically worse than the conventional mating strategy. Sim-

ilarly, in those result tables comparing the performance of RK-GA0 against other

GA-based and non-GA-based benchmark techniques, the bullet symbol (”•”) indi-

cates that the performance of a benchmark technique is statistically better than that

of RK-GA0, while the checkbox symbol (”⊠”) indicates that a benchmark technique

performed statistically worse than RK-GA0.

Finally, for convenience, see Section 5.1.5 for all the tables of results.

5.1.1 Experimental Data

A total of 24 benchmark data sets from the UCI Machine Learning Repository (New-

man and Merz 1998) were used in the experiments with Testbed problem 1. The

training data examples were described by vectors of both numeric and nominal at-

tributes. Following the example of Rozsypal and Kubat (2003, Quirino and Kubat
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(2010), the UCI data sets were modified to make them better suited for the experi-

ments. First, all examples having unknown attribute values were removed from each

data set. Then, all numerical attributes were normalized to mean value 0 and stan-

dard deviation 1. Next, artificially created attributes were added to each data set.

Given a data set with NAT “original” attributes, a total of 2 · NAT attributes were

added as random values picked from the standard uniform distribution. This modifi-

cation was done, as described in Section 2.3.3, because in order to evaluate the GA’s

ability to discard irrelevant attributes from a data set, which is one the objectives

of these experiments. Moreover, the UCI data sets are known to have few irrelevant

attributes.

Table 5.1 summarizes the data set characteristics: the number of examples, the

number of attributes, and the number of classes.

From an statistical point of view, most of the UCI data sets were not sufficiently

large. Hence, the experiments with each UCI data set were run as 5-fold cross-

validation33, repeated 10 times for different seeds of the random number generator.

This corresponds to a total of 50 experiments per data set for each technique. The

statistical significance of the differences in performance among the various techniques

was then tested by the paired t-test at a 5% confidence level.

33K-fold cross-validation is a technique for estimating the performance of a predictive model. A
data set is randomly shuffled and then split into K equal parts. Then, K − 1 parts are used for
training the predictive model and the remaining part for evaluating the model. This process is
repeated K times, each time using a different partition for evaluation of the model.
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Table 5.1: Characteristics of the experimental UCI data sets in Testbed Problem 1.
No. of No. of No. of No. of
Classes Examples Original Original+Artificial

Data Sets Attributes Attributes

abalone 28 4177 8 24
balance 3 625 4 12
breast 2 683 9 27
bupa 2 345 6 18
car 4 1728 6 18
cmc 3 1473 9 27
crx 2 690 15 45
derm 6 358 34 102
glass 6 215 9 27
haber 2 306 3 9
heart 2 270 13 39
ion 2 351 34 102
iris 3 150 4 12
kr-vs-kp 2 3196 36 108
mushroom 2 5644 22 66
newthy 3 215 5 15
pima 2 768 8 24
segment 7 2310 19 57
sonar 2 208 60 180
vote 3 435 16 48
wdbc 2 569 30 90
wine 3 178 13 39
wpbc 2 194 33 99
yeast 10 1484 8 24
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5.1.2 Reference Techniques

The primary goal of the experiments is to show that “instinct-based” mating indeed

speeds-up convergence when implemented as an improvement to the baseline RK-

GA0. In this respect, RK-GA0, which relies on the conventional mating strategy, is

the reference point against which the performance of the IM-GA mating strategies

will be gauged.

At the same time, it is imperative to compare the performance of RK-GA0 against

that of well-established techniques (although it is clearly not possible to make com-

parisons with every single existing technique) in order to ensure that RK-GA0 is not

a weak GA that could be easily improved by the IM-GA mating strategies.

From among existing GA-based approaches, the CHC (Eshelman 1991), PBIL (Cano,

Herrera, and Lozano 2003), and HT-GA(Ishibuchi and Nakashima 2000) were chosen

as representative techniques. These GAs were briefly described in Section 3.3.2.

To evaluate RK-GA0’s ability to discard irrelevant attributes, the performance of

its induced 1-NN classifiers were compared the that of the C4.5 Decision Trees pro-

gram (Quinlan 1993)), which is known to be particularly good at this task. Also, fol-

lowing the example of Kuncheva and Jain (1999), the example-selection techniques E-

NN and C-NN with the attribute-selection technique of Sequential Forward Selection

(SFS) were combined sequentially to perform 1-NN Tuning. Kuncheva and Jain

(1999) reported that the sequential application of these three techniques yielded a

good balance between accuracy and data set reduction. This combination will be

referred to by the acronym WHSFS.
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Table 5.2 summarizes all the techniques employed in the experiments. In this

table, the baseline RK-GA0 is the technique sought to be improved in this work by

the application of “instinct-based” mating in Testbed problem 1. Also in this table,

the RK-GA1, RK-GA2, RK-GA3, RK-GA4, and RK-GA5 (defined in Section 4.4.4)

correspond to the five different combinations of RK-GA0 with each of the five IM-

GA “instinct-based” mating strategies proposed in Sections 4.2 and 4.3. All other

remaining techniques were previously published in literature and are used in the

experiments as benchmarks against which the performance of RK-GA0 (with the

conventional mating strategy) is compared to.

Every effort has been made to tune the reference techniques for their best per-

formances, to make sure that the comparisons are fair.34 Thus Rozsypal and Kubat

(2003) reported good results of their original RK-GA when using 100 generations and

population size NP = 30. Therefore, the same values were used in RK-GA0 (in the

case of the IM-GA multi-population GA mating strategy, IM-MP, each of the three

populations had NP /3 = 10 specimens). In the case of CHC, the number of children

per generation can vary from 0 to NP . Hence, CHC was allowed to run for as many

generations as needed to reach the same number of fitness-function evaluations as the

other GAs (NP × 100 = 3000).

Following the suggestion from (Rozsypal and Kubat 2003), the RK-GA0 was ini-

tialized by filling the example chromosomes with 10 uniformly distributed random

numbers (from 1 to NET ), and the attribute chromosomes with an ordered set of

34Tuning is the setting of classifier parameter values to optimize performance (e.g. fixing GA
population size and fixing number of trees in decision forest).
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Table 5.2: A summary of all GA-based and non-GA-based techniques used in the
experiments for Testbed Problem 1.

Methods Acronyms

RK-GA0
The algorithm developed by Rozsypal and Kubat (2003) and enhanced
in Section 4.4.2 to use automatic weight selection. This technique relies
on the conventional mating strategy and it is improved in this work by
the application of the IM-GA “instinct-based” mating strategies in
Testbed problem 1

RK-GA1
This GA is the combination of the baseline RK-GA0 with IM-GA

Strategy 1 (IM-R-H ): Instinct-based Mating using the “Hamming”
measure and “Random” (stochastic) selection of the first parents.

RK-GA2
This GA is the combination of the baseline RK-GA0 with IM-GA

Strategy 2 (IM-D-H ): Instinct-based Mating using the “Hamming”
measure and “Deterministic” selection of the first parents.

RK-GA3
This GA is the combination of the baseline RK-GA0 with IM-GA

Strategy 3 (IM-R-CMW ): Instinct-based Mating using the novel
“Correct-My-Wrongs” measure and “Random” (stochastic) selection
of the first parents.

RK-GA4
This GA is the combination of the baseline RK-GA0 with IM-GA

Strategy 4 (IM-D-CMW ): Instinct-based Mating using the novel
“Correct-My-Wrongs” measure and “Deterministic” selection of
the first parents.

RK-GA5
This GA is the combination of the baseline RK-GA0 with IM-GA

Strategy 5 (IM-MP): Instinct-based Mating using Multiple-Populations.

CHC
Cross-generational elitist selection, Heterogeneous recombination,
and Cataclysmic mutation genetic algorithm (Eshelman 1991).

PBIL
Population Based Incremental Learning genetic algorithm
(Cano, Herrera, and Lozano 2003).

HT-GA
The GA based, 1-NN tuning algorithm developed by
Ishibuchi and Nakashima (2000).

C4.5 The C4.5 Decision Trees program developed by Quinlan (1993).

WHSFS
Heuristic combination of Wilson’s E-NN, proceeded by Hart’s
C-NN, and proceeded by Sequential Forward
Selection (Kuncheva and Jain 1999).

1-NN The simple, non-edited nearest-neighbor classifier (Cover and Hart 1967).
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integers from 1 to NAT . As for CHC and HT-GA, their chromosomes were initialized

with the same mechanism. Note that if CHC been initialized as suggested by their

authors, the RK-GA0 would have conferred an unfair advantage (i.e. 10 instances vs.

50% of the data set on average) due to the large number of instances in the bench-

mark data sets. On the other hand, PBIL does not initially generate a population

of chromosomes, but populates each new generation by sampling from a vector of

probabilities (Cano, Herrera, and Lozano 2003). Hence, no interference was made to

its initial probabilities setup. The positive learning rate in PBIL was set to 0.1 and

the negative learning rate was set to 0.075. Also, the mutation shift was set to 0.05

and the mutation rate was set to 0.02 (Cano, Herrera, and Lozano 2003).

In HT-GA, the attribute bit mutation rate was set to 0.01 and the instance bit 1-

to-0 and 0-to-1 mutation rates were set to 0.1 and 0.01, respectively. The weight WPF

was set to 5, and both weights WF and WP were set to 1 (Ishibuchi and Nakashima

2000).

In the C4.5 Decision Trees program, the default parameter values were used (in-

cluding pruning). This enabled C4.5 to retain fewer attributes without compromising

performance. The minimum number of instances per leaf was set to 2 and the number

of folds for reduced error pruning was set to 3.

The mutation rate in RK-GA0 was set to 5% for all experiments with and without

the IM-GA mating strategies. This value was advocated by Rozsypal and Kubat

(2003), who mentioned their results were unaffected by small variations of this value.

For CHC, the population restart mutation rate was set to 35%.
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5.1.3 Accelerated GA Convergence

The experimental results presented here compare the convergence speed of the base-

line RK-GA0 with (1) the conventional mating strategy versus with (2) the IM-GA

“instinct-based” mating strategies. Recall from the discussions in Section 2.3.1 that

the convergence speed is measured as the time required for the average specimen ac-

curacy35 of RK-GA0 to reach a certain convergence target. Time is measured by the

number of fitness-function evaluations. The convergence target for Testbed Problem

1 is set as the accuracy corresponding to the non-edited 1-NN classifier’s accuracy.

The non-edited 1-NN classifier’s accuracy is obtained from Table 5.6, which presents

averaged results from multiple cross-validation runs. Moreover, using the GA pop-

ulation’s average accuracy is more objective than using the top-fitness specimen’s

accuracy because the latter can be good by mere chance.

Note that that the performance of RK-GA0 is occasionally better than those

reported in (Rozsypal and Kubat 2003) because of the more realistic weight parameter

values used in the fitness-function (see a detailed explanation of this improvement in

Section 4.4.2). Also, since the goal of this work is to improve RK-GA0’s performance

with “instinct-based” mating, the convergence speed of RK-GA0 was not compared to

that of the other GA-based methods (CHC, PBIL and HT-GA) so as not to mislead

further discussion.

For each UCI data set and each strategy, Table 5.3 gives the time needed by

the average specimen to reach the non-edited-1-NN accuracy from Table 5.6. The

35The average specimen accuracy is measured as the average classification accuracy of the classi-
fiers represented by the GA population
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bullet symbol (”•”) indicates that the value achieved by an IM-GA mating strategy

is statistically better than that achieved by RK-GA0 (which relies on the conventional

mating strategy). Conversely, the checkbox symbol (”⊠”) identifies those cases where

IM-GA performed statistically worse than RK-GA0.

The table shows that strategies IM-D-CMW (RK-GA4), IM-D-H (RK-GA2), IM-

R-CMW (RK-GA3), IM-R-H (RK-GA1), and IM-MP (RK-GA5) converged statis-

tically faster than RK-GA0 in nineteen, ten, seven, one, and thirteen data sets, re-

spectively. The only case where the convergence speed of RK-GA0 with an “instinct-

based” mating strategy was slower than with the conventional mating strategy was

when IM-R-CMW (RK-GA3) was applied to the cmc data set. In all of the remaining

cases, the convergence speed of “instinct-based” mating was comparable to that of

RK-GA0.

The conclusion is that the IM-GA “instinct-based” mating strategies speed up

convergence in many UCI data sets, although different strategies exhibit somewhat

different behavior. Also, the IM-D-CMW strategy (RK-GA4) outperformed all other

techniques. In five of the twenty-four data sets, no significant acceleration was ob-

served.

5.1.4 Performance on Auxiliary Criteria

Having shown that the IM-GA “instinct-based” mating strategies tend to make the

baseline RK-GA0 convergence faster, it is imperative to ensure that this improvements

do not come at the cost of lower quality of the induced 1-NN classifier. To achieve this,
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the performance of RK-GA0 with and without “instinct-based” mating is investigated

along the three criteria that were described in Section 2.3:

1. Classification accuracy: The percentage of correctly classified testing examples

(i.e. independent data set);

2. Example set reduction: The ability to choose a small training set, measured as

the percentage of examples retained at the end of the GA run, and;

3. Attribute set reduction: The ability to remove irrelevant attributes from the

training set, measured as the percentage of attributes retained at the end of the

GA run.

Recall that the “original” attributes in the UCI data sets may be relevant, ir-

relevant, or redundant. However, the randomly generated attributes that were “ar-

tificially” added to the UCI data sets are always irrelevant. The 1-NN classifier

classification accuracy may be adversely affected by the removal of the “original”

attributes, but probably not by the removal of “artificial” attributes.

Note that that the performance of RK-GA0 is occasionally better than those re-

ported in (Rozsypal and Kubat 2003) because of the more realistic weight parameter

values used in the fitness-function (see Section 4.4.2). The experimental results pre-

sented here primarily compare the behaviors of the proposed IM-GA “instinct-based”

mating strategies to that RK-GA0. To ensure that RK-GA0 is not a weak GA that

can be easily improved upon, performance comparisons of RK-GA0 with some well-

established techniques are also presented.
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Classification Accuracy

Table 5.4 shows the classification accuracy achieved in the UCI data sets by the 1-NN

classifiers obtained by RK-GA0 with different IM-GA mating strategies. The bullet

(”•”) indicates that the value achieved by the given strategy is statistically better

than that achieved by RK-GA0 according to the paired t-test. The checkbox symbol

(”⊠”) identifies those cases where the given strategy performed statistically worse

than RK-GA0 (according to the paired t-test).

The results indicate that all IM-GA mating strategies reach classification perfor-

mances comparable to that of RK-GA0. To be more specific, IM-D-H (RK-GA2)

significantly outperformed RK-GA0 in five data sets, IM-R-CMW (RK-GA3) and

IM-D-CMW (RK-GA4) outperformed RK-GA0 in four data sets, IM-R-H (RK-GA1)

outperformed RK-GA0 in three data sets, and IM-MP (RK-GA5) outperformed RK-

GA0 in two data sets. Only in the wpbc data set were three out of five IM-GA

mating strategies statistically worse. In all other cases, the results of the IM-GA

“instinct-based” mating strategies were comparable to those of RK-GA0.

The conclusion is that the IM-GA mating strategies are capable of optimizing

the set of stored examples and their descriptions in a way that does not compromise

the classification performance of the 1-NN classifier that uses them. Occasionally,

the IM-GA mating strategies lead to classifiers that are more accurate than those

obtained by RK-GA0.

Tables 5.5 and 5.6 compare RK-GA0’s classification performance with other GA-

based and non-GA-based techniques, respectively. The results are very favorable for
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RK-GA0. The best of the “competitors” is the C4.5 Decision Trees program (C4.5)

that performs statistically better in five data sets, worse in eleven, and comparably

in eight.

Table 5.6 shows that both C4.5 and WHSFS perform extremely well in comparison

to the simple, non-edited 1-NN classifier. Against this background, RK-GA0’s ability

to improve classification accuracy by removing less valuable examples and attributes

is very impressive.

All of these results lead to the conclusion that the 1-NN classifiers obtained by

RK-GA0 outperform those obtained by the other investigated benchmark techniques.

The experiments also indicated that the IM-GA mating strategies most of the time

statistically outperformed all other techniques in terms of classification accuracy.

Example Set Reduction

The next task is to ensure that the IM-GA mating strategies do not produce larger

sets of retained examples. Note that comparisons to both C4.5 and the non-edited

1-NN classifier are omitted because neither of these techniques attempt to reduce the

set of training examples.

Table 5.7 summarizes the results of experiments that compare RK-GA0 and the

IM-GA mating strategies in terms of the average numbers of retained examples. No-

tice that the sizes of the resulting example subsets are in all data sets below 5.2%.

Most of the time, only 1-2% of the examples were retained. All of the IM-GA mating

strategies seem to be less successful in this task than RK-GA0. However, this may be

due to the bias toward high classification accuracy specimens in the “instinct-based
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mating” strategies, which explain the higher accuracies of the IM-GA mating strate-

gies in Table 5.4. However, the observed differences, while sometimes statistically

significant, are small enough to be tolerated in practical applications. In addition,

the observed differences are compensated by faster convergence and improved classi-

fication performance.

Table 5.8 compares the results of RK-GA0 with those of GA-based and non-GA-

based techniques. While all GA-based techniques exhibit impressive ability to reduce

the size of the training set (e.g. the highest value is 21% of examples retained), RK-

GA0 managed to significantly outperform all of these techniques in all UCI data sets.

Surprisingly, the performance of WHSFS were rather disappointing.

The conclusion is that RK-GA0 performs better than the other techniques. While

the IM-GA mating strategies performed tolerably worse than RK-GA0 along this

criterion, their accelerated convergence and improved classification accuracy outweigh

the slightly increased training set size.

Attribute Set Reduction

Finally, the ability of all the techniques to discard irrelevant attributes is investigated.

In the modified data sets used in the experiments, this ability can be observed along

two different criteria: 1) how many of the “original” attributes are retained, and 2)

how many of the “artificially” added (or irrelevant) attributes are retained.

Table 5.9 shows how RK-GA0 and all IM-GA mating strategies optimized the

“original” set of attributes. Notice that in comparison to RK-GA0, the number of

attributes retained by any IM-GA mating strategy is slightly (though always signif-
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icantly) higher. This may be explained by the higher classification accuracies of the

IM-GA mating strategies in Table 5.4.

The situation is different when it comes to the ability to remove “artificially”

added irrelevant attributes. The results given in Table 5.10 indicate that the IM-

GA strategies perform very well, discarding almost all of these irrelevant attributes.

The only exception was the case where IM-D-H (RK-GA2) performed worse than

RK-GA0 in the wpbc data set. In the bupa data set, IM-R-H (RK-GA1) performed

significantly better than RK-GA0.

The results summarized so far reveal that the proposed IM-GA mating strategies

tend to converge to specimens whose second chromosomes contain relevant attributes

(i.e. containing some information about the class label). To corroborate this hypoth-

esis, the data sets were discretized using the MDL discretization technique recom-

mended by Fayyad and K.Irani (1993), and the information gain of the individual

attributes were then computed. The attributes having the highest information gain

were indeed found to be included in almost all of the final solutions discovered by

any IM-GA mating strategy. It seems reasonable to assume that the GA should con-

verge to this solution because, in 1-NN classifiers, such attributes yield the optimal

separation between examples of different classes.

Tables 5.11 and 5.12 show that none of the GA-based and non-GA-based bench-

mark techniques performed as well as RK-GA0 in handling the attributes set. Ta-

ble 5.11 shows that the only statistically better result was when C4.5 was applied to

the derm data set, while comparable results are seen in all benchmark techniques in

the balance data set, for PBIL in the iris data set, for WHSFS in the mushroom
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data set, and for the C4.5 Decision Trees Program in the wine data set. In all other

data sets, their results are statistically worse than those of RK-GA0.

Similarly, none of the GA-based and non-GA-based benchmark techniques per-

formed as well as RK-GA0 it comes to dealing with irrelevant attributes. CHC, PBIL,

HT-GA, WHSFS, and C4.5 perform comparably to RK-GA0 in one, eight, two, one,

and eight data sets, respectively. Additionally, PBIL performed statistically better

than RK-GA0 in the car data set. All other results were statistically worse than

those of RK-GA0.

The conclusion from all these results is that the IM-GA “instinct-based” mat-

ing strategies perform only slightly worse than the baseline RK-GA0 in retaining

“original” attributes. However, this is compensated by the improved accuracy of the

induced 1-NN classifiers and faster GA convergence. In addition, the results also sug-

gest that RK-GA0 performs significantly better than all the other tested techniques,

GA-based and non-GA-based, in the task of optimizing the training data sets used

to induce 1-NN classifiers.

5.1.5 Results Tables for Testbed Problem 1

All of the tables of results referenced in Sections 5.1.3 and 5.1.4 are presented in the

following pages. The tables are organized in the order referred to in the paper.
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Table 5.3: Time taken by the average specimen of the baseline RK-GA0 versus the
IM-GA mating strategies to reach the non-edited 1-NN classifier target accuracy given
in Table 5.6.

Data Set RK-GA0 RK-GA1 RK-GA2 RK-GA3 RK-GA4 RK-GA5

abalone 65 ± 12.5 66 ± 12.7 63 ± 10.6 62 ± 9.5 59 ± 9.2 • 64 ± 10.3
balance 190 ± 35.0 194 ± 30.7 190 ± 33.0 195 ± 32.5 162 ± 23.7 • 180 ± 32.6
breast 131 ± 31.2 123 ± 24.7 120 ± 23.7 • 126 ± 24.5 112 ± 20.8 • 123 ± 21.6
bupa 8 ± 5.9 9 ± 6.8 9 ± 6.8 8 ± 6.2 10 ± 7.4 8 ± 6.4
car 46 ± 7.3 47 ± 7.6 48 ± 7.1 47 ± 5.7 46 ± 5.4 44 ± 6.5
cmc 64 ± 11.5 66 ± 11.5 65 ± 9.7 72 ± 13.5 ⊠ 61 ± 10.7 60 ± 9.5 •
crx 130 ± 24.9 127 ± 23.6 122 ± 21.8 • 127 ± 22.6 105 ± 21.1 • 118 ± 21.4 •
derm 187 ± 28.2 193 ± 33.0 182 ± 26.0 173 ± 26.1 • 159 ± 21.4 • 166 ± 19.8 •
glass 253 ± 58.1 240 ± 61.1 232 ± 47.1 • 237 ± 43.4 210 ± 49.3 • 214 ± 59.2 •
haber 51 ± 12.0 55 ± 12.6 49 ± 7.3 53 ± 15.0 50 ± 9.4 54 ± 13.2
heart 73 ± 28.4 71 ± 27.2 69 ± 29.6 73 ± 30.0 61 ± 19.7 • 75 ± 26.2
ion 182 ± 34.7 172 ± 39.5 155 ± 33.5 • 161 ± 32.5 • 145 ± 31.4 • 144 ± 27.6 •
iris 90 ± 24.6 91 ± 22.8 89 ± 25.4 83 ± 17.7 • 78 ± 18.2 • 95 ± 22.7
kr-vs-kp 208 ± 42.0 201 ± 30.7 190 ± 24.9 • 193 ± 36.9 • 171 ± 26.2 • 182 ± 29.4 •
mushrrom 245 ± 29.6 237 ± 29.7 235 ± 32.3 237 ± 27.1 210 ± 21.6 • 215 ± 24.9 •
newthy 229 ± 46.3 210 ± 37.5 • 208 ± 33.5 • 215 ± 27.0 • 187 ± 31.3 • 202 ± 45.1 •
pima 106 ± 35.0 101 ± 27.1 97 ± 27.7 96 ± 21.9 • 86 ± 18.6 • 89 ± 23.3 •
segment 415 ± 50.8 407 ± 54.2 383 ± 41.0 • 415 ± 53.2 346 ± 52.0 • 373 ± 51.8 •
sonar 339 ± 71.1 336 ± 96.5 300 ± 73.6 • 315 ± 102.0 270 ± 81.7 • 320 ± 60.7
vote 174 ± 23.5 172 ± 19.2 166 ± 20.8 • 169 ± 18.3 152 ± 17.1 • 145 ± 17.0 •
wdbc 159 ± 34.2 161 ± 35.5 154 ± 36.4 166 ± 32.5 137 ± 31.8 • 163 ± 34.7
wine 209 ± 38.4 207 ± 39.9 199 ± 38.7 208 ± 38.7 184 ± 34.0 • 181 ± 34.0 •
wpbc 16 ± 10.8 15 ± 11.2 16 ± 9.6 13 ± 10.5 17 ± 9.6 15 ± 9.7
yeast 221 ± 42.6 213 ± 26.9 201 ± 27.0 • 204 ± 32.0 • 181 ± 30.6 • 189 ± 28.7 •
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Table 5.4: Classification accuracy of the baseline RK-GA0 versus the IM-GA mating
strategies.
Data Set RK-GA0 RK-GA1 RK-GA2 RK-GA3 RK-GA4 RK-GA5

abalone 26.1 ± 1.8 26.0 ± 1.4 26.0 ± 1.5 26.2 ± 1.2 26.0 ± 1.3 26.1 ± 1.3
balance 87.1 ± 3.3 87.1 ± 3.5 87.8 ± 2.7 87.7 ± 2.8 87.4 ± 3.0 87.8 ± 3.3
breast 96.1 ± 1.6 96.2 ± 1.6 96.1 ± 1.8 96.3 ± 1.6 96.0 ± 1.5 96.1 ± 1.3
bupa 58.4 ± 7.5 65.0 ± 8.1 • 61.9 ± 9.2 • 64.3 ± 6.7 • 61.3 ± 8.2 • 59.6 ± 8.5
car 70.3 ± 2.7 72.0 ± 4.0 • 72.6 ± 4.9 • 72.2 ± 4.3 • 73.0 ± 4.9 • 70.8 ± 3.5
cmc 52.7 ± 4.0 53.6 ± 2.4 53.4 ± 3.0 53.3 ± 2.8 53.7 ± 2.9 53.4 ± 3.1
crx 86.4 ± 2.8 86.0 ± 2.8 86.0 ± 2.7 86.2 ± 2.5 85.9 ± 2.9 86.3 ± 2.3
derm 91.3 ± 3.5 91.5 ± 3.7 92.5 ± 4.1 91.9 ± 4.1 92.2 ± 3.6 92.3 ± 3.2
glass 65.3 ± 6.3 67.3 ± 7.1 67.2 ± 7.1 65.6 ± 7.5 66.4 ± 7.5 65.6 ± 6.6
haber 73.5 ± 4.9 74.0 ± 4.8 73.8 ± 4.9 74.1 ± 5.5 73.8 ± 5.2 72.7 ± 5.9
heart 80.8 ± 4.8 80.6 ± 5.2 80.4 ± 5.1 81.2 ± 5.3 80.6 ± 5.3 81.1 ± 4.8
ion 88.0 ± 3.2 88.6 ± 4.0 87.2 ± 3.8 88.1 ± 3.8 88.3 ± 3.9 88.7 ± 3.1
iris 93.8 ± 3.2 93.7 ± 3.6 93.8 ± 3.2 93.5 ± 3.9 93.3 ± 4.1 94.1 ± 3.4
kr-vs-kp 90.9 ± 5.7 92.3 ± 3.7 92.6 ± 3.1 • 93.6 ± 1.4 • 91.3 ± 5.1 91.5 ± 4.4
mushrrom 98.9 ± 0.6 99.5 ± 0.5 • 99.6 ± 0.4 • 99.5 ± 0.5 • 99.2 ± 0.6 • 99.2 ± 0.6 •
newthy 93.2 ± 4.6 93.2 ± 4.1 93.2 ± 3.9 92.7 ± 4.1 93.2 ± 4.1 93.6 ± 3.8
pima 75.3 ± 3.7 75.1 ± 3.6 75.7 ± 2.8 75.4 ± 2.5 75.6 ± 3.6 75.5 ± 3.0
segment 91.8 ± 1.6 92.1 ± 1.2 92.3 ± 1.2 • 92.2 ± 1.4 92.2 ± 1.2 • 92.3 ± 1.4 •
sonar 72.3 ± 6.2 72.3 ± 6.1 73.1 ± 7.0 73.1 ± 6.4 72.3 ± 6.9 72.2 ± 6.4
vote 97.0 ± 2.1 97.0 ± 2.3 97.0 ± 2.5 97.0 ± 2.3 97.0 ± 2.3 97.0 ± 2.4
wdbc 95.9 ± 1.8 96.0 ± 1.7 95.9 ± 1.8 95.8 ± 2.1 95.9 ± 1.7 95.9 ± 2.0
wine 93.8 ± 4.6 94.2 ± 4.6 93.4 ± 5.0 94.4 ± 4.2 93.6 ± 3.9 94.5 ± 4.0
wpbc 76.0 ± 7.1 73.3 ± 6.0 ⊠ 74.0 ± 5.8 72.5 ± 6.4 ⊠ 72.8 ± 6.0 ⊠ 76.0 ± 6.0
yeast 55.4 ± 3.0 55.9 ± 2.8 55.7 ± 2.6 55.6 ± 3.1 55.6 ± 3.2 55.7 ± 3.0
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Table 5.5: Classification accuracy of the baseline RK-GA0 versus the GA-based tech-
niques CHC, PBIL, and HT-GA.

Data Set RK-GA0 CHC PBIL HT-GA

abalone 26.1 ± 1.8 22.0 ± 1.6 ⊠ 21.3 ± 1.4 ⊠ 18.6 ± 1.1 ⊠

balance 87.1 ± 3.3 82.9 ± 4.7 ⊠ 85.0 ± 3.4 ⊠ 84.5 ± 3.4 ⊠

breast 96.1 ± 1.6 95.8 ± 1.7 96.4 ± 1.2 95.6 ± 1.5 ⊠

bupa 58.4 ± 7.5 54.2 ± 5.6 ⊠ 58.8 ± 6.4 53.9 ± 6.4 ⊠

car 70.3 ± 2.7 81.0 ± 6.7 • 84.9 ± 3.2 • 69.8 ± 2.2
cmc 52.7 ± 4.0 42.6 ± 3.2 ⊠ 48.8 ± 3.0 ⊠ 41.2 ± 2.8 ⊠

crx 86.4 ± 2.8 70.6 ± 5.8 ⊠ 84.5 ± 2.5 ⊠ 65.1 ± 4.4 ⊠

derm 91.3 ± 3.5 65.8 ± 9.5 ⊠ 90.6 ± 4.2 39.6 ± 5.6 ⊠

glass 65.3 ± 6.3 54.7 ± 9.6 ⊠ 67.2 ± 7.2 48.4 ± 7.4 ⊠

haber 73.5 ± 4.9 69.9 ± 5.5 ⊠ 73.3 ± 5.1 72.3 ± 5.6
heart 80.8 ± 4.8 79.8 ± 4.7 81.7 ± 5.1 77.3 ± 4.6 ⊠

ion 88.0 ± 3.2 83.3 ± 4.7 ⊠ 85.8 ± 4.5 ⊠ 81.3 ± 4.5 ⊠

iris 93.8 ± 3.2 95.5 ± 3.7 • 94.6 ± 3.9 82.3 ± 8.8 ⊠

kr-vs-kp 90.9 ± 5.7 53.6 ± 1.4 ⊠ 86.9 ± 8.5 ⊠ 54.4 ± 1.8 ⊠

mushroom 98.9 ± 0.6 94.5 ± 3.7 ⊠ 99.9 ± 0.1 • 100.0 ± 0.0 •
newthy 93.2 ± 4.6 94.2 ± 4.1 93.4 ± 4.2 89.4 ± 4.3 ⊠

pima 75.3 ± 3.7 69.5 ± 3.3 ⊠ 73.4 ± 3.2 ⊠ 70.2 ± 3.7 ⊠

segment 91.8 ± 1.6 77.3 ± 4.6 ⊠ 93.9 ± 1.4 • 92.5 ± 1.2 •
sonar 72.3 ± 6.2 64.7 ± 7.1 ⊠ 67.4 ± 6.8 ⊠ 64.0 ± 6.9 ⊠

vote 97.0 ± 2.1 89.6 ± 5.4 ⊠ 96.5 ± 2.8 79.6 ± 6.2 ⊠

wdbc 95.9 ± 1.8 92.3 ± 2.7 ⊠ 94.4 ± 2.5 ⊠ 92.0 ± 2.7 ⊠

wine 93.8 ± 4.6 93.5 ± 4.9 94.4 ± 3.9 88.2 ± 4.9 ⊠

wpbc 76.0 ± 7.1 70.9 ± 6.5 ⊠ 73.8 ± 6.1 ⊠ 74.0 ± 7.1
yeast 55.4 ± 3.0 50.5 ± 4.3 ⊠ 53.6 ± 2.4 ⊠ 50.1 ± 4.7 ⊠
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Table 5.6: Classification accuracy of the baseline RK-GA0 versus the non-GA-based
techniques WHSFS, C4.5, and non-edited 1-NN classifier.

Data Set RK-GA0 WHSFS C4.5 1-NN

abalone 26.1 ± 1.8 18.7 ± 1.4 ⊠ 24.1 ± 1.3 ⊠ 16.4 ± 1.1 ⊠

balance 87.1 ± 3.3 78.4 ± 5.4 ⊠ 77.6 ± 3.6 ⊠ 70.2 ± 3.3 ⊠

breast 96.1 ± 1.6 95.8 ± 1.6 94.4 ± 2.1 ⊠ 94.0 ± 1.5 ⊠

bupa 58.4 ± 7.5 51.2 ± 5.4 ⊠ 61.1 ± 5.6 • 50.3 ± 6.4 ⊠

car 70.3 ± 2.7 70.0 ± 6.7 87.3 ± 2.2 • 60.1 ± 2.4 ⊠

cmc 52.7 ± 4.0 38.5 ± 3.1 ⊠ 50.5 ± 2.7 ⊠ 39.4 ± 2.7 ⊠

crx 86.4 ± 2.8 79.7 ± 4.7 ⊠ 85.9 ± 2.4 62.8 ± 4.1 ⊠

derm 91.3 ± 3.5 89.2 ± 4.5 ⊠ 92.5 ± 4.1 41.8 ± 5.5 ⊠

glass 65.3 ± 6.3 50.3 ± 7.2 ⊠ 63.3 ± 6.8 51.3 ± 6.3 ⊠

haber 73.5 ± 4.9 72.0 ± 4.6 71.0 ± 6.4 ⊠ 69.1 ± 6.0 ⊠

heart 80.8 ± 4.8 77.7 ± 5.9 ⊠ 76.3 ± 6.1 ⊠ 70.6 ± 5.8 ⊠

ion 88.0 ± 3.2 84.7 ± 5.7 ⊠ 88.7 ± 4.1 74.6 ± 5.6 ⊠

iris 93.8 ± 3.2 93.5 ± 3.9 93.9 ± 3.9 75.6 ± 7.3 ⊠

kr-vs-kp 90.9 ± 5.7 95.1 ± 1.7 • 98.9 ± 0.6 • 54.4 ± 1.9 ⊠

mushroom 98.9 ± 0.6 99.6 ± 0.7 • 100.0 ± 0.1 • 79.7 ± 1.1 ⊠

newthy 93.2 ± 4.6 91.3 ± 4.2 ⊠ 90.8 ± 4.6 ⊠ 86.2 ± 5.5 ⊠

pima 75.3 ± 3.7 70.0 ± 3.1 ⊠ 72.4 ± 3.8 ⊠ 67.3 ± 3.6 ⊠

segment 91.8 ± 1.6 94.5 ± 1.2 • 94.7 ± 1.1 • 64.6 ± 2.2 ⊠

sonar 72.3 ± 6.2 75.8 ± 7.0 • 68.0 ± 7.2 ⊠ 64.6 ± 6.4 ⊠

vote 97.0 ± 2.1 95.5 ± 3.7 ⊠ 96.8 ± 2.5 79.0 ± 5.4 ⊠

wdbc 95.9 ± 1.8 93.5 ± 2.6 ⊠ 93.3 ± 2.7 ⊠ 88.0 ± 2.8 ⊠

wine 93.8 ± 4.6 94.2 ± 3.4 89.2 ± 7.0 ⊠ 85.4 ± 5.2 ⊠

wpbc 76.0 ± 7.1 73.9 ± 6.9 74.6 ± 6.7 62.7 ± 6.0 ⊠

yeast 55.4 ± 3.0 42.2 ± 2.9 ⊠ 56.1 ± 3.0 38.6 ± 2.8 ⊠
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Table 5.7: Percentage of examples retained by the baseline RK-GA0 versus the IM-GA
mating strategies.

Data Set RK-GA0 RK-GA1 RK-GA2 RK-GA3 RK-GA4 RK-GA5

abalone 0.4 ± 0.1 0.4 ± 0.1 ⊠ 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1
balance 1.2 ± 0.5 1.2 ± 0.5 1.4 ± 0.6 1.3 ± 0.6 1.3 ± 0.4 1.3 ± 0.6
breast 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 ⊠ 0.4 ± 0.1 ⊠ 0.4 ± 0.1 0.4 ± 0.1 ⊠

bupa 0.9 ± 0.3 1.3 ± 0.4 ⊠ 1.2 ± 0.4 ⊠ 1.3 ± 0.4 ⊠ 1.3 ± 0.5 ⊠ 1.3 ± 0.5 ⊠

car 0.1 ± 0.0 0.1 ± 0.1 ⊠ 0.2 ± 0.2 ⊠ 0.1 ± 0.1 ⊠ 0.2 ± 0.1 ⊠ 0.1 ± 0.1
cmc 0.8 ± 0.3 0.8 ± 0.4 1.0 ± 0.4 ⊠ 0.9 ± 0.4 0.8 ± 0.4 0.8 ± 0.3
crx 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1
derm 4.3 ± 0.9 4.4 ± 0.9 4.6 ± 1.1 ⊠ 4.4 ± 1.0 4.3 ± 0.9 4.2 ± 1.0
glass 4.7 ± 1.3 5.2 ± 1.3 ⊠ 5.2 ± 1.3 5.1 ± 1.3 5.1 ± 1.1 4.6 ± 1.1
haber 0.8 ± 0.3 1.0 ± 0.3 ⊠ 0.9 ± 0.3 ⊠ 1.0 ± 0.2 ⊠ 1.0 ± 0.3 ⊠ 0.9 ± 0.3 ⊠

heart 1.0 ± 0.3 1.0 ± 0.2 1.1 ± 0.2 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.3
ion 1.5 ± 0.4 1.7 ± 0.4 ⊠ 1.8 ± 0.6 ⊠ 1.8 ± 0.6 ⊠ 1.7 ± 0.4 ⊠ 1.7 ± 0.4
iris 2.5 ± 0.0 2.5 ± 0.0 2.5 ± 0.0 2.5 ± 0.1 2.5 ± 0.0 2.5 ± 0.0
kr-vs-kp 0.2 ± 0.1 0.3 ± 0.1 ⊠ 0.2 ± 0.1 0.3 ± 0.3 ⊠ 0.2 ± 0.2 0.2 ± 0.1
mushrrom 0.2 ± 0.1 0.3 ± 0.1 ⊠ 0.3 ± 0.1 ⊠ 0.3 ± 0.2 ⊠ 0.2 ± 0.1 ⊠ 0.2 ± 0.1
newthy 1.9 ± 0.3 1.9 ± 0.3 1.9 ± 0.4 2.0 ± 0.3 1.9 ± 0.3 1.9 ± 0.3
pima 0.4 ± 0.2 0.5 ± 0.2 ⊠ 0.5 ± 0.2 0.5 ± 0.2 ⊠ 0.5 ± 0.2 ⊠ 0.5 ± 0.2
segment 2.4 ± 0.6 2.8 ± 0.6 ⊠ 2.6 ± 0.5 2.8 ± 0.6 ⊠ 2.7 ± 0.7 ⊠ 2.6 ± 0.6
sonar 1.4 ± 0.3 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.5 ± 0.5
vote 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0
wdbc 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1
wine 2.2 ± 0.2 2.2 ± 0.3 2.3 ± 0.3 2.2 ± 0.3 2.2 ± 0.2 2.2 ± 0.3
wpbc 0.7 ± 0.3 1.2 ± 0.6 ⊠ 1.3 ± 0.7 ⊠ 1.3 ± 0.5 ⊠ 1.2 ± 0.6 ⊠ 0.7 ± 0.2
yeast 1.4 ± 0.4 1.7 ± 0.6 ⊠ 1.7 ± 0.5 ⊠ 1.7 ± 0.5 ⊠ 1.8 ± 0.6 ⊠ 1.6 ± 0.5 ⊠
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Table 5.8: Percentage of examples retained by the baseline RK-GA0 and the GA-based
techniques CHC, PBIL, and HT-GA and the non-GA-based technique WHSFS.

Data Set RK-GA0 CHC PBIL HT-GA WHSFS

abalone 0.4 ± 0.1 0.5 ± 0.1 ⊠ 18.8 ± 0.6 ⊠ 5.6 ± 1.3 ⊠ 15.5 ± 0.7 ⊠

balance 1.2 ± 0.5 7.2 ± 2.3 ⊠ 10.6 ± 1.0 ⊠ 7.7 ± 1.3 ⊠ 75.6 ± 1.7 ⊠

breast 0.4 ± 0.1 1.9 ± 0.7 ⊠ 6.0 ± 0.8 ⊠ 5.1 ± 0.7 ⊠ 75.1 ± 13.7 ⊠

bupa 0.9 ± 0.3 6.8 ± 3.6 ⊠ 10.6 ± 1.7 ⊠ 7.3 ± 1.4 ⊠ 49.9 ± 2.6 ⊠

car 0.1 ± 0.0 11.3 ± 2.0 ⊠ 15.0 ± 1.4 ⊠ 1.8 ± 1.4 ⊠ 63.8 ± 1.4 ⊠

cmc 0.8 ± 0.3 1.4 ± 0.2 ⊠ 16.3 ± 1.0 ⊠ 6.7 ± 0.6 ⊠ 40.0 ± 1.0 ⊠

crx 0.4 ± 0.1 8.6 ± 4.2 ⊠ 11.3 ± 1.3 ⊠ 7.3 ± 1.1 ⊠ 64.8 ± 1.6 ⊠

derm 4.3 ± 0.9 21.0 ± 2.8 ⊠ 16.8 ± 1.9 ⊠ 10.6 ± 1.6 ⊠ 41.9 ± 2.6 ⊠

glass 4.7 ± 1.3 15.4 ± 2.8 ⊠ 13.2 ± 2.4 ⊠ 11.6 ± 1.7 ⊠ 48.7 ± 3.5 ⊠

haber 0.8 ± 0.3 4.2 ± 1.9 ⊠ 3.7 ± 1.1 ⊠ 5.1 ± 1.3 ⊠ 63.9 ± 4.1 ⊠

heart 1.0 ± 0.3 5.7 ± 2.1 ⊠ 6.2 ± 1.4 ⊠ 7.5 ± 1.5 ⊠ 71.3 ± 3.0 ⊠

ion 1.5 ± 0.4 9.5 ± 2.2 ⊠ 11.3 ± 1.5 ⊠ 8.5 ± 1.4 ⊠ 58.6 ± 11.2 ⊠

iris 2.5 ± 0.0 3.5 ± 1.1 ⊠ 2.9 ± 0.5 ⊠ 10.4 ± 2.4 ⊠ 74.0 ± 5.8 ⊠

kr-vs-kp 0.2 ± 0.1 0.7 ± 0.1 ⊠ 19.2 ± 0.6 ⊠ 7.2 ± 0.4 ⊠ 56.4 ± 0.4 ⊠

mushroom 0.2 ± 0.1 13.7 ± 2.7 ⊠ 15.1 ± 0.3 ⊠ 6.5 ± 0.3 ⊠ 84.5 ± 0.3 ⊠

newthy 1.9 ± 0.3 3.5 ± 1.2 ⊠ 3.8 ± 1.0 ⊠ 6.4 ± 1.7 ⊠ 67.6 ± 12.0 ⊠

pima 0.4 ± 0.2 2.4 ± 1.2 ⊠ 11.3 ± 1.1 ⊠ 6.8 ± 1.2 ⊠ 69.0 ± 2.5 ⊠

segment 2.4 ± 0.6 15.0 ± 1.2 ⊠ 16.0 ± 0.7 ⊠ 9.6 ± 0.7 ⊠ 66.8 ± 1.2 ⊠

sonar 1.4 ± 0.3 16.6 ± 3.6 ⊠ 12.4 ± 2.3 ⊠ 9.9 ± 1.9 ⊠ 67.4 ± 3.0 ⊠

vote 1.1 ± 0.0 5.6 ± 2.5 ⊠ 5.3 ± 1.2 ⊠ 9.5 ± 1.5 ⊠ 78.9 ± 2.9 ⊠

wdbc 0.5 ± 0.1 4.8 ± 1.3 ⊠ 9.0 ± 1.1 ⊠ 6.3 ± 0.9 ⊠ 84.5 ± 4.3 ⊠

wine 2.2 ± 0.2 4.6 ± 1.7 ⊠ 5.1 ± 1.2 ⊠ 9.1 ± 1.8 ⊠ 86.9 ± 3.7 ⊠

wpbc 0.7 ± 0.3 5.2 ± 1.9 ⊠ 5.1 ± 1.7 ⊠ 4.4 ± 2.4 ⊠ 48.3 ± 16.1 ⊠

yeast 1.4 ± 0.4 13.9 ± 3.6 ⊠ 16.2 ± 0.9 ⊠ 8.2 ± 0.8 ⊠ 39.0 ± 1.4 ⊠
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Table 5.9: Percentage of original attributes retained by the baseline RK-GA0 versus
the IM-GA mating strategies.
Data Set RK-GA0 RK-GA1 RK-GA2 RK-GA3 RK-GA4 RK-GA5

abalone 25.3 ± 15.5 24.5 ± 10.7 23.0 ± 13.4 24.3 ± 12.7 27.0 ± 16.2 26.8 ± 15.8
balance 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
breast 42.7 ± 8.2 42.9 ± 7.8 44.4 ± 9.5 43.1 ± 9.2 42.7 ± 9.1 43.1 ± 9.2
bupa 24.3 ± 14.4 35.7 ± 10.1 ⊠ 34.0 ± 12.1 ⊠ 37.0 ± 11.3 ⊠ 33.7 ± 14.5 ⊠ 30.7 ± 12.8 ⊠

car 8.3 ± 9.7 15.3 ± 15.7 ⊠ 18.3 ± 20.3 ⊠ 16.0 ± 18.7 ⊠ 20.0 ± 19.9 ⊠ 11.0 ± 13.3
cmc 30.9 ± 9.1 32.2 ± 8.2 34.0 ± 8.2 ⊠ 33.3 ± 8.4 32.9 ± 7.8 34.2 ± 10.0 ⊠

crx 8.5 ± 4.7 9.2 ± 5.7 9.3 ± 5.2 10.4 ± 6.0 ⊠ 9.9 ± 5.6 7.5 ± 3.2
derm 30.9 ± 9.2 29.5 ± 7.7 29.5 ± 7.5 34.5 ± 9.5 ⊠ 29.4 ± 7.9 30.5 ± 7.3
glass 30.2 ± 9.3 31.3 ± 8.0 32.0 ± 8.0 31.6 ± 8.2 32.2 ± 9.0 32.7 ± 9.6
haber 34.7 ± 17.8 41.3 ± 18.5 ⊠ 43.3 ± 16.8 ⊠ 43.3 ± 15.4 ⊠ 42.7 ± 15.1 ⊠ 38.7 ± 21.7
heart 30.5 ± 8.1 32.8 ± 8.0 30.6 ± 7.4 32.9 ± 8.2 32.2 ± 9.3 31.4 ± 6.9
ion 7.5 ± 1.8 8.0 ± 2.4 8.5 ± 2.3 ⊠ 8.4 ± 2.0 ⊠ 8.1 ± 2.2 8.2 ± 1.8 ⊠

iris 31.0 ± 10.8 34.0 ± 12.1 32.5 ± 11.6 34.0 ± 12.1 35.0 ± 12.4 ⊠ 31.5 ± 11.1
kr-vs-kp 10.8 ± 2.2 12.4 ± 3.3 ⊠ 12.2 ± 3.4 ⊠ 13.2 ± 3.1 ⊠ 11.9 ± 4.3 11.4 ± 2.3
mushrrom 11.2 ± 10.1 16.5 ± 6.2 ⊠ 18.0 ± 6.6 ⊠ 17.5 ± 8.1 ⊠ 14.9 ± 9.1 ⊠ 12.3 ± 6.2
newthy 47.6 ± 11.3 52.4 ± 13.3 ⊠ 53.6 ± 11.7 ⊠ 52.0 ± 12.8 ⊠ 51.6 ± 10.0 ⊠ 52.8 ± 12.0 ⊠

pima 32.3 ± 10.4 36.3 ± 9.5 ⊠ 35.8 ± 10.1 ⊠ 35.5 ± 10.2 37.0 ± 10.7 ⊠ 34.8 ± 8.9
segment 33.8 ± 8.0 33.4 ± 7.4 34.9 ± 7.8 34.2 ± 7.2 32.1 ± 5.4 33.7 ± 6.3
sonar 3.9 ± 1.1 4.6 ± 1.6 ⊠ 4.4 ± 1.3 ⊠ 4.8 ± 1.4 ⊠ 4.1 ± 1.5 4.5 ± 1.7 ⊠

vote 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0
wdbc 13.3 ± 3.5 14.4 ± 3.5 13.9 ± 3.2 14.1 ± 3.1 13.9 ± 3.9 14.9 ± 3.9 ⊠

wine 31.4 ± 5.6 31.4 ± 4.6 30.8 ± 5.6 32.3 ± 5.8 32.5 ± 6.3 31.7 ± 5.7
wpbc 1.6 ± 1.8 3.6 ± 2.8 ⊠ 3.1 ± 3.0 ⊠ 4.0 ± 2.7 ⊠ 3.8 ± 2.8 ⊠ 1.5 ± 1.8
yeast 62.5 ± 9.4 66.3 ± 10.5 ⊠ 65.0 ± 11.3 69.8 ± 10.4 ⊠ 65.8 ± 10.4 66.3 ± 10.8 ⊠
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Table 5.10: Percentage of “artificial” (irrelevant) attributes retained by the baseline
RK-GA0 versus the IM-GA mating strategies.

Data Set RK-GA0 RK-GA1 RK-GA2 RK-GA3 RK-GA4 RK-GA5

abalone 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
balance 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 1.8
breast 0.3 ± 1.3 0.4 ± 1.5 0.2 ± 1.1 0.1 ± 0.8 0.4 ± 1.5 0.1 ± 0.8
bupa 2.8 ± 4.3 1.2 ± 4.1 • 1.5 ± 4.0 1.7 ± 4.8 1.8 ± 5.7 3.8 ± 7.4
car 4.5 ± 4.2 3.3 ± 4.1 3.8 ± 4.2 4.0 ± 4.2 3.3 ± 4.1 4.0 ± 4.2
cmc 0.1 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.8 0.0 ± 0.0
crx 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
derm 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
glass 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
haber 10.0 ± 8.9 12.7 ± 7.9 11.7 ± 9.7 11.0 ± 8.7 10.3 ± 8.8 7.3 ± 8.4
heart 0.4 ± 1.2 0.5 ± 1.3 0.4 ± 1.4 0.5 ± 1.3 0.2 ± 0.8 0.5 ± 1.3
ion 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
iris 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
kr-vs-kp 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
mushrrom 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
newthy 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
pima 0.9 ± 2.5 0.4 ± 1.5 1.0 ± 2.6 0.8 ± 2.4 0.5 ± 1.7 0.6 ± 1.9
segment 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
sonar 0.0 ± 0.1 0.0 ± 0.2 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1 0.0 ± 0.1
vote 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
wdbc 0.1 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.2 0.1 ± 0.3 0.0 ± 0.0
wine 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
wpbc 0.8 ± 0.8 0.8 ± 0.8 1.2 ± 0.9 ⊠ 0.9 ± 0.9 1.0 ± 1.3 0.9 ± 0.8
yeast 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Table 5.11: Percentage of original attributes retained by the baseline RK-GA0 versus
the GA-based techniques CHC, PBIL, and HT-GA and non-GA-based techniques
WHSFS and C4.5.
Data Set RK-GA0 CHC PBIL HT-GA WHSFS C4.5

abalone 25.3 ± 15.5 100.0 ± 0.0 ⊠ 76.8 ± 14.1 ⊠ 99.5 ± 2.5 ⊠ 99.5 ± 2.5 ⊠ 99.8 ± 1.8 ⊠

balance 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
breast 42.7 ± 8.2 80.2 ± 11.9 ⊠ 54.9 ± 11.5 ⊠ 98.4 ± 3.9 ⊠ 75.8 ± 19.5 ⊠ 46.9 ± 11.9 ⊠

bupa 24.3 ± 14.4 87.3 ± 19.8 ⊠ 49.3 ± 11.6 ⊠ 92.0 ± 10.8 ⊠ 94.3 ± 14.5 ⊠ 68.7 ± 19.8 ⊠

car 8.3 ± 9.7 80.0 ± 14.3 ⊠ 64.7 ± 6.4 ⊠ 98.0 ± 6.4 ⊠ 94.0 ± 11.5 ⊠ 92.0 ± 8.4 ⊠

cmc 30.9 ± 9.1 100.0 ± 0.0 ⊠ 49.8 ± 11.3 ⊠ 92.9 ± 8.3 ⊠ 99.3 ± 2.7 ⊠ 94.9 ± 7.2 ⊠

crx 8.5 ± 4.7 78.5 ± 16.8 ⊠ 28.7 ± 7.5 ⊠ 92.7 ± 5.9 ⊠ 48.4 ± 17.8 ⊠ 28.1 ± 14.4 ⊠

derm 30.9 ± 9.2 71.5 ± 7.5 ⊠ 50.8 ± 6.8 ⊠ 93.6 ± 3.8 ⊠ 47.2 ± 18.8 ⊠ 19.8 ± 2.0 •
glass 30.2 ± 9.3 71.8 ± 9.3 ⊠ 52.0 ± 11.3 ⊠ 95.1 ± 6.0 ⊠ 93.6 ± 13.7 ⊠ 61.6 ± 9.3 ⊠

haber 34.7 ± 17.8 64.0 ± 23.2 ⊠ 52.0 ± 21.5 ⊠ 92.7 ± 13.9 ⊠ 93.3 ± 13.5 ⊠ 77.3 ± 31.2 ⊠

heart 30.5 ± 8.1 60.8 ± 9.5 ⊠ 46.2 ± 7.5 ⊠ 93.7 ± 7.1 ⊠ 78.0 ± 16.0 ⊠ 42.9 ± 10.7 ⊠

ion 7.5 ± 1.8 54.4 ± 8.7 ⊠ 33.6 ± 6.6 ⊠ 91.5 ± 4.3 ⊠ 27.7 ± 20.5 ⊠ 10.5 ± 4.6 ⊠

iris 31.0 ± 10.8 50.5 ± 13.8 ⊠ 31.5 ± 11.1 98.0 ± 6.9 ⊠ 47.5 ± 18.4 ⊠ 63.5 ± 13.6 ⊠

kr-vs-kp 10.8 ± 2.2 100.0 ± 0.0 ⊠ 47.9 ± 8.8 ⊠ 92.6 ± 7.3 ⊠ 50.5 ± 7.5 ⊠ 50.2 ± 5.5 ⊠

mushroom 11.2 ± 10.1 95.5 ± 4.1 ⊠ 62.7 ± 12.2 ⊠ 80.5 ± 8.0 ⊠ 12.7 ± 1.8 30.9 ± 2.8 ⊠

newthy 47.6 ± 11.3 73.2 ± 13.2 ⊠ 53.6 ± 11.0 ⊠ 98.4 ± 5.5 ⊠ 59.2 ± 14.0 ⊠ 71.6 ± 17.2 ⊠

pima 32.3 ± 10.4 99.0 ± 4.9 ⊠ 49.8 ± 11.7 ⊠ 98.3 ± 4.4 ⊠ 98.8 ± 5.2 ⊠ 55.0 ± 16.4 ⊠

segment 33.8 ± 8.0 87.8 ± 5.1 ⊠ 49.4 ± 10.2 ⊠ 75.4 ± 8.1 ⊠ 42.7 ± 22.7 ⊠ 52.9 ± 7.6 ⊠

sonar 3.9 ± 1.1 36.2 ± 5.9 ⊠ 26.9 ± 5.1 ⊠ 83.3 ± 4.8 ⊠ 70.8 ± 24.9 ⊠ 5.6 ± 2.6 ⊠

vote 6.3 ± 0.0 51.0 ± 7.7 ⊠ 10.0 ± 4.6 ⊠ 95.5 ± 5.4 ⊠ 16.6 ± 23.0 ⊠ 13.6 ± 3.3 ⊠

wdbc 13.3 ± 3.5 67.6 ± 6.9 ⊠ 37.1 ± 6.6 ⊠ 90.4 ± 4.6 ⊠ 52.9 ± 31.2 ⊠ 14.8 ± 3.8 ⊠

wine 31.4 ± 5.6 57.1 ± 10.0 ⊠ 40.9 ± 8.3 ⊠ 95.4 ± 6.6 ⊠ 46.3 ± 13.9 ⊠ 30.6 ± 6.5
wpbc 1.6 ± 1.8 14.8 ± 7.0 ⊠ 7.3 ± 4.3 ⊠ 47.3 ± 24.7 ⊠ 35.3 ± 31.5 ⊠ 4.5 ± 2.7 ⊠

yeast 62.5 ± 9.4 93.8 ± 8.5 ⊠ 80.5 ± 8.8 ⊠ 95.5 ± 7.0 ⊠ 100.0 ± 0.0 ⊠ 97.0 ± 6.9 ⊠
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Table 5.12: Percentage of “artificial” (irrelevant) attributes retained by the baseline
RK-GA0 versus the GA-based techniques CHC, PBIL, and HT-GA and non-GA-based
techniques WHSFS and C4.5.
Data Set RK-GA0 CHC PBIL HT-GA WHSFS C4.5

abalone 0.0 ± 0.0 100.0 ± 0.0 ⊠ 2.9 ± 4.0 ⊠ 86.8 ± 10.5 ⊠ 99.3 ± 2.4 ⊠ 98.8 ± 2.8 ⊠

balance 0.0 ± 0.0 14.8 ± 32.2 ⊠ 0.0 ± 0.0 12.0 ± 22.0 ⊠ 52.8 ± 37.2 ⊠ 11.8 ± 11.4 ⊠

breast 0.3 ± 1.3 31.1 ± 17.6 ⊠ 1.8 ± 3.8 ⊠ 69.8 ± 13.2 ⊠ 25.8 ± 16.1 ⊠ 1.2 ± 3.2 ⊠

bupa 2.8 ± 4.3 71.8 ± 36.2 ⊠ 11.2 ± 11.6 ⊠ 92.2 ± 8.1 ⊠ 89.0 ± 13.1 ⊠ 11.8 ± 11.1 ⊠

car 4.5 ± 4.2 3.8 ± 6.3 0.2 ± 1.2 • 97.2 ± 6.0 ⊠ 77.8 ± 39.9 ⊠ 24.7 ± 11.3 ⊠

cmc 0.1 ± 0.8 100.0 ± 0.0 ⊠ 2.9 ± 5.3 ⊠ 92.0 ± 7.1 ⊠ 99.4 ± 2.0 ⊠ 54.4 ± 18.1 ⊠

crx 0.0 ± 0.0 47.9 ± 37.2 ⊠ 0.7 ± 1.6 ⊠ 83.3 ± 7.7 ⊠ 8.6 ± 18.0 ⊠ 1.4 ± 2.3 ⊠

derm 0.0 ± 0.0 12.5 ± 5.3 ⊠ 0.4 ± 0.8 ⊠ 75.0 ± 6.6 ⊠ 1.4 ± 1.2 ⊠ 0.1 ± 0.3
glass 0.0 ± 0.0 15.2 ± 13.6 ⊠ 0.2 ± 1.1 83.7 ± 9.2 ⊠ 59.9 ± 25.9 ⊠ 4.1 ± 5.7 ⊠

haber 10.0 ± 8.9 39.3 ± 25.8 ⊠ 10.0 ± 8.9 85.7 ± 15.8 ⊠ 75.0 ± 29.8 ⊠ 10.0 ± 14.7
heart 0.4 ± 1.2 18.0 ± 8.7 ⊠ 3.2 ± 3.1 ⊠ 79.2 ± 10.9 ⊠ 40.7 ± 16.9 ⊠ 2.2 ± 2.9 ⊠

ion 0.0 ± 0.0 23.4 ± 6.3 ⊠ 4.1 ± 2.7 ⊠ 76.0 ± 6.7 ⊠ 5.3 ± 11.4 ⊠ 0.2 ± 0.6 ⊠

iris 0.0 ± 0.0 0.8 ± 3.0 ⊠ 0.0 ± 0.0 62.8 ± 27.1 ⊠ 5.5 ± 8.4 ⊠ 0.0 ± 0.0
kr-vs-kp 0.0 ± 0.0 100.0 ± 0.0 ⊠ 2.5 ± 4.3 ⊠ 87.4 ± 3.3 ⊠ 1.2 ± 0.6 ⊠ 0.3 ± 0.6 ⊠

mushroom 0.0 ± 0.0 22.7 ± 7.7 ⊠ 1.3 ± 1.7 ⊠ 0.0 ± 0.0 1.8 ± 0.9 ⊠ 0.0 ± 0.0
newthy 0.0 ± 0.0 3.4 ± 4.8 ⊠ 0.0 ± 0.0 61.2 ± 22.2 ⊠ 2.4 ± 4.8 ⊠ 0.4 ± 2.0
pima 0.9 ± 2.5 96.8 ± 13.1 ⊠ 5.0 ± 7.4 ⊠ 84.5 ± 11.0 ⊠ 92.0 ± 13.3 ⊠ 11.1 ± 13.6 ⊠

segment 0.0 ± 0.0 23.1 ± 9.3 ⊠ 0.1 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 1.9 ± 3.0 ⊠

sonar 0.0 ± 0.1 20.8 ± 5.4 ⊠ 10.4 ± 2.8 ⊠ 78.1 ± 4.7 ⊠ 17.8 ± 16.3 ⊠ 0.4 ± 0.8 ⊠

vote 0.0 ± 0.0 9.3 ± 6.2 ⊠ 0.1 ± 0.4 81.1 ± 9.1 ⊠ 2.3 ± 6.6 ⊠ 0.3 ± 0.9 ⊠

wdbc 0.1 ± 0.3 36.5 ± 7.3 ⊠ 4.7 ± 2.8 ⊠ 80.0 ± 6.4 ⊠ 8.2 ± 10.4 ⊠ 0.1 ± 0.5
wine 0.0 ± 0.0 7.5 ± 5.7 ⊠ 0.2 ± 0.9 ⊠ 68.4 ± 13.2 ⊠ 2.9 ± 4.4 ⊠ 0.0 ± 0.0
wpbc 0.8 ± 0.8 14.8 ± 4.9 ⊠ 4.9 ± 2.8 ⊠ 48.5 ± 25.2 ⊠ 8.7 ± 10.7 ⊠ 0.8 ± 1.5
yeast 0.0 ± 0.0 17.4 ± 23.2 ⊠ 0.1 ± 0.9 26.3 ± 22.4 ⊠ 99.5 ± 2.1 ⊠ 40.3 ± 20.2 ⊠
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5.2 Performance of IM-GA in Testbed Problem 2

The experimental results presented in this section support the following three claims

about the impact of the proposed IM-GA mating strategies in the baseline TM-GA0

when applied to Testbed Problem 2:

1. Faster Convergence: The IM-GA “instinct-based” mating strategies lead TM-

GA0 to faster convergence in Testbed Problem 2.

2. Improved Quality of Solutions: The IM-GA “instinct-based” mating strategies

do not impact the accuracy of the decision forests induced by TM-GA0, oc-

casionally improving TM-GA0’s abilities to discard noisy/irrelevant attributes

and build more compact decision forests (i.e. having decision trees with less

nodes and requiring less tests to classify unknown examples).

3. TM-GA0 performs comparably or better than the well-established, non-GA-

based, classical ensemble generation techniques of Bagging, AdaBoost, and Ran-

dom Forests in terms of classification accuracy, when the classical techniques

are built with ensembles of both 25 and 50 decision trees. Also, TM-GA0 gen-

erates smaller decision forests having significantly lower memory footprint (i.e.

number of nodes), requiring significantly less tests to classify unknown examples

(i.e. lower classification costs), and being significantly more interpretable than

those generated by the classical techniques. This establishes that TM-GA0 is

not a weak GA and that the improvements achieved by the application of the

IM-GA mating strategies in TM-GA0 are real improvements.
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Section 5.2.1 presents the UCI benchmark data sets used in all experiments with

Testbed Problem 2. Section 5.2.2 list all the techniques, GA-based and non-GA-

based, used in the experiments and discusses the parameters used to tune all of them

for their best performances. Then, results for the convergence speed, which is the main

performance criteria used to evaluate the impact of the IM-GA mating strategies in

Testbed problem 2, are presented in Section 5.2.3. The experimental results reported

in Section 5.2.4 show that the improvements in convergence speed achieved by the

IM-GA mating strategies were not achieved at the cost of other performance criteria.

Finally, the same section also shows that TM-GA0 outperforms other well-established,

classical techniques for ensemble generation along the various performance criteria

discussed in Section 2.3.

In those result tables comparing the performance of TM-GA0 with and without

“instinct-based” mating, the bullet symbol (”•”) indicates that the value achieved

by an IM-GA strategy is statistically better than that achieved by the conventional

mating strategy. Conversely, the checkbox symbol (”⊠”) identifies those cases where

IM-GA performed statistically worse than the conventional mating strategy. Simi-

larly, in those result tables comparing the performance of TM-GA0 against the non-

GA-based, classical benchmark techniques, the bullet symbol (”•”) indicates that the

performance of a benchmark technique is statistically better than that of TM-GA0,

while the checkbox symbol (”⊠”) indicates that a benchmark technique performed

statistically worse than TM-GA0.

Also, recall from the discussion in Section 4.5.3, that the impact of IM-GA Strate-

gies 2, 4, and 5 on the performance of TM-GA0 are investigated in Testbed Problem
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2 (ignoring IM-GA Strategies 1 and 3) because of their superior performances in

Testbed Problem 1.

Finally, for convenience, see Section 5.2.5 for all the tables of results.

5.2.1 Experimental Data

Similar to what was done for Testbed Problem 1, a total of 22 data sets from the

UCI Repository (Newman and Merz 1998) were chosen to conduct the experiments

with Testbed Problem 2. Due to limitations in the availability of computing power36,

it was not possible to evaluate TM-GA0 on a few of the larger UCI data sets that

were used in the evaluation of Testbed Problem 1. However, the total number of

benchmark data sets used here is still large (i.e. 22 UCI data sets). These data sets

were chosen because of their previous use in Testbed Problem 1 and also because of

their diversity (i.e. varying in terms of number of examples, attributes, and classes).

Prior to experimentation, the data sets were modified as was done for Testbed

Problem 1. Irrelevant attributes were added to each data set to evaluate TM-GA0’s

ability to discard noisy/irrelevant attributes from the data sets. This modification

was done, following the example from previous works (Rozsypal and Kubat 2003;

Quirino and Kubat 2010), because it follows that UCI data sets have mostly relevant

attributes. The modification process is as follows: 1) all examples with unknown

attribute values were removed from each data set, 2) all numerical attributes (“artifi-

cial” included) were normalized to mean 0 and standard deviation 1, and 3) irrelevant

(or “artificial”) attributes were added to each data set; where a data set contained

36This research challenge was detailed in Section 1.2.
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NA “original” attributes, 2 · NA irrelevant attributes were appended as randomly

generated values from the standard uniform distribution. Table 5.13 summarizes the

characteristics of all data sets: the numbers of examples, classes, original attributes,

and original plus synthetic attributes.

Table 5.13: Characteristics of the experimental UCI data sets in Testbed Problem 2.
No. of No. of No. of No. of
Classes Examples Original Original+Artificial

Data Sets Attributes Attributes

balance 3 625 4 12
breast-c 2 277 9 27
breast-w 2 683 9 27
bupa 2 345 6 18
car 4 1728 6 18
cmc 3 1473 9 27
crx 2 690 15 45
derm 6 358 34 102
glass 6 215 9 27
haber 2 306 3 9
heart 2 270 13 39
ion 2 351 34 102
iris 3 150 4 12
newthy 3 215 5 15
pima 2 768 8 24
solar 6 1389 12 36
sonar 2 208 60 180
tic-tac-toe 2 958 9 27
vote 3 435 16 48
wdbc 2 569 30 90
wine 3 178 13 39
wpbc 2 194 33 99

As was the case in Testbed Problem 1, most of the UCI data sets were not suffi-

ciently large from an statistical point of view. To account for this, all data sets were

cross-validated37 during experimentation. Each data set was randomly arranged 10

37N-fold cross-validation is the process of splitting a data set into N equal parts and subsequently
training a classifier with N-1 parts and evaluating it on the remaining part, repeated N times.
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times; the order of the examples was changed. For each random arrangement, 5-fold

cross-validation was used. This resulted in a total of 50 experiments per data set for

each technique employed in the experiments.

After experimentation, the chosen performance metrics described in Section 2.3

(i.e. classification accuracy, ability to remove irrelevant attributes, and decision forest

size38) were validated statistically, to ensure the differences in performance among

the techniques were not due to mere chance. To this end, the paired t-test at a 5%-

confidence level was employed to assess the significance of performance differences. In

summary, the experimental data sets choice, modification, 5-fold cross-validation, and

statistical validation make up the platform upon which the experiments for Testbed

Problem 2 are conducted.

5.2.2 Reference Techniques

The primary goal of the experiments is to show that “instinct-based” mating indeed

speeds-up convergence when implemented as an improvement to the baseline TM-

GA0. In this respect, TM-GA0, which relies on the conventional mating strategy, is

the reference point against which the performance of the IM-GA mating strategies

will be gauged.

At the same time, just as was done for the baseline RK-GA0 in Testbed Problem 1,

it is imperative to also compare the performance of the baseline TM-GA0 against that

of well-established techniques (although it is clearly not possible to make comparisons

38The size of a decision forest is measured using four criteria: 1) number of trees in the decision
forest, 2) total number of nodes, 3) total number of leaves , and 4) average number of tests required
to classify an unknown example.
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with every single existing technique) in order to ensure that TM-GA0 is not a weak

GA that could be easily improved by the IM-GA mating strategies.

To this end, TM-GA0 was compared to three well-known, classical techniques of

classifier ensemble generation: 1) Bagging (Breiman 1996), 2) AdaBoost (Freund and

Schapire 1996), and 3) Random Forest (Breiman and Schapire 2001). These renowned

non-GA-based classical techniques generate accurate decision forests. Thus, TM-

GA0’s classification accuracy (as well as other performance criteria) is compared to

that of each of these techniques to show that any improvement in TM-GA0 due to the

IM-GA mating strategies is a real improvement. Additionally, to measure accuracy,

TM-GA0 was compared to a fourth classical method of decision trees generation, the

C4.5 Decision Trees program (Quinlan 1993) (C4.5). In addition to being used by both

TM-GA0 and the classical techniques to induce decision trees for their decision forests,

C4.5 is also used as a baseline for comparison against that of the novel TM-GA0 to

ensure that the decision forests generated by TM-GA0 are always more accurate than

a single decision tree.

Table 5.14 summarizes all the techniques employed in the experiments. In this ta-

ble, the baseline TM-GA0 is the technique sought to be improved in this work by the

application of “instinct-based” mating in Testbed Problem 2. Also in this table, the

TM-GA2, TM-GA4, and TM-GA5(defined in Section 4.5.3) correspond to the three

combinations of TM-GA0 with the IM-GA mating strategies that best performed

in Testbed Problem 1; IM-D-H (single-population Strategy 2), IM-D-CMW (single-

population Strategy 4), and IM-MP(multi-population Strategy 5), which were defined

in Sections 4.2 and 4.3. All other remaining techniques were previously published in
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literature and are used in the experiments as benchmarks against which the perfor-

mance of TM-GA0 (with the conventional mating strategy) is compared to.

Table 5.14: A summary of all GA-based and non-GA-based techniques used in the
experiments for Testbed Problem 2.

Methods Acronyms

TM-GA0
The novel GA for the discovery of optimal (accurate and compact)
decision forests developed in this work in Section 4.5.1. This technique
relies on the conventional mating strategy and it is improved in this
work by the application of the IM-GA “instinct-based” mating
strategies in Testbed problem 2

TM-GA2
This GA is the combination of the baseline TM-GA0 with IM-GA

Strategy 2 (IM-D-H ): Instinct-based Mating using the “Hamming”
measure and “Deterministic” selection of the first parents.

TM-GA4
This GA is the combination of the baseline TM-GA0 with IM-GA

Strategy 4 (IM-D-CMW ): Instinct-based Mating using the novel
“Correct-My-Wrongs” measure and “Deterministic” selection of
the first parents.

TM-GA5
This GA is the combination of the baseline TM-GA0 with IM-GA

Strategy 5 (IM-MP): Instinct-based Mating using Multiple-Populations.

Bagging
The Bootstrap Aggregating classifier ensemble generation technique

developed by Breiman (1996).

AdaBoost
The Adaptive Boosting classifier ensemble generation technique
developed by Freund and Schapire (1996).

RF
The Random Forests classifier ensemble generation technique
developed by Breiman and Schapire (2001).

C4.5 The C4.5 Decision Trees program developed by Quinlan (1993).

Every effort has been made to tune the reference techniques for their best per-

formances, to make sure that the comparisons are fair.39 In particular, TM-GA0

was tuned to optimize three criteria: 1) accuracy, 2) removal of irrelevant attributes,

and 3) decision forest size. The three classical techniques (Bagging, AdaBoost, and

Random Forests) and the C4.5 Decision Trees program were tuned to optimize only

accuracy. The tuning process described below was done prior to running each tech-

nique.

39Tuning is the setting of classifier parameter values to optimize performance (e.g. fixing GA
population size and fixing number of trees in decision forest).
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The novel TM-GA0 was tuned as follows: The GA population size was set to

60 specimens 40, NP = 60. Each of the 60 specimens correspond to a decision for-

est, where each forest was initially set to 7 trees. Each tree then corresponds to a

chromosome-pair (see Section 4.5.1). At any iteration of TM-GA0 decision forests

having less than 3 decision trees were discarded. It was observed through rigorous

experimentation that decision forests having less than 3 decision trees were unable to

“complement”, and thereby correct, each others’ classification errors.

Next, both the example and attribute chromosomes were initialized. The exam-

ple chromosomes were initialized with 1% of randomly selected training examples

(random integers ranging from 1 to NET , the data set size). The values chosen to

initialize all attribute chromosomes were the same, the set of integers from 1 to NAT

(all attributes in a data set). At each iteration of TM-GA0, 5% of randomly selected

example and attribute chromosomes from all generated children decision forests were

mutated to promote diversity41.

In addition to initializing the chromosomes, the fitness-function was then tailored

by setting coefficient values c1-c6 to “1” (see Equation 4.21). This neutral coefficient

value was chosen because the choice of initial conditions for the chromosome-pairs of

the specimens promotes initially large differences among the terms of the fitness-

function given by Equation 4.21 (see Section 4.5.1 for a detailed explanation). This

large differences generate natural weights that sufficiently guide the genetic search.

40This is twice that of previous works (Rozsypal and Kubat 2003; Quirino and Kubat 2010)
because this new problem has a much larger search space than 1-NN tuning (see Section 2.2), hence,
a larger population was needed to avoid premature convergence.

41Previous works (Rozsypal and Kubat 2003; Quirino and Kubat 2010) found results were un-
affected by small variations of this value. Larger values prevented the GA from converging to a
solution.
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After initialization and tailoring of coefficient values, a stopping criteria for the

TM-GA0 run was set. The GA run was stopped when the top fitness value of the

population could not be further improved for at least 1,000 generations42.

To tune the three classical techniques of decision forest generation (Bagging, Ad-

aBoost, and Random Forests) a parameter common to all three was first set: the

decision forest size, which must be set manually. Breiman (1996) says that in exper-

iments with UCI data sets, improvements over single classifiers were evident when

ensembles of 25 classifiers were used, and that no significant accuracy gains were at-

tained from larger ensembles. Hence, relying on the findings of previous works, the

size of the ensembles generated by Bagging, AdaBoost, and RandomForest was set to

25 decision trees. In addition, ensembles of 50 decision trees were also considered for

the purpose of comparing the classification accuracy of TM-GA0 against that of the

classical techniques. The purpose of increasing the ensemble size beyond what was

suggested in the literature (i.e. doubling from 25 to 50 decision trees) was to ensure

that the three classical techniques were indeed tuned for their best performances.

Having set the forest size, we further tuned each individual technique. For Bagging

and AdaBoost, the example sampling bag size was set to (default) 100% of training

set size. For Random Forest, the number of randomly selected attributes used to

build forests was set as suggested by Breiman and Schapire (2001): log2(NAT ), where

NAT is the total number of attributes in the training data set.

42Better solutions were not generated beyond this threshold of fitness stagnation in either small
or large UCI data sets. However, larger data sets required more generations to converge.
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Finally, C4.5 Decision Trees program was tuned. Its purpose in these experiments

is two-fold: 1) as an external “decision tree builder” for all techniques, new and

classical, and 2) as a benchmark whose accuracy was compared against that of the

baseline TM-GA0. For the first purpose, C4.5 was tuned such that each decision for-

est generation technique optimized the decision trees on their own, instead of relying

on C4.5 to reduce over-fitting. This is an important step in evaluating TM-GA0’s

ability to discard irrelevant attributes in the data sets. To this end, the “unpruned”

option43 with minimum 2 examples per leaf44 was used in order to just build trees,

not optimize them. Note that this setup should not impact the performance of the

classical techniques since the majority voting scheme used in the classification pro-

cess of ensemble methods (i.e. output “averaging”) has an equivalent effect on the

performance of ensemble systems to that of pruning a decision tree: reducing training

set over-fitting.

However, when the C4.5 Decision Trees program is used for the second purpose

(accuracy comparison against TM-GA0) it was tuned for optimal accuracy by using

the default program options. These options included decision tree pruning using the

“subtree raising” operation (to reduce over-fitting), a confidence factor of 0.25 for

pruning decision rules45, and a minimum 2 examples per leaf.

In summary, the classical techniques used to validate the performance of TM-GA0

were tuned using parameter values reported in the literature, and therefore provide a

reliable basis upon which to show that TM-GA0 is not a weak GA that can be easily

43Unpruned trees corresponds to C4.5 Decision Trees program option “-U”.
44Number of leaves is set in the C4.5 Decision Trees program by (default) option “-M 2”.
45Confidence factor is set in C4.5 Decision Trees program by (default) option “-C”.
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improved upon. Therefore, TM-GA0 can be used with confidence to investigate the

optimization abilities of the IM-GA “instinct-based” mating strategies when applied

to Testbed Problem 2.

5.2.3 Accelerated GA Convergence

The experimental results presented here compare the convergence speed of the base-

line TM-GA0 with (1) the conventional mating strategy versus with (2) the IM-GA

“instinct-based” mating strategies. Recall from the discussions in Section 2.3.1 that

the convergence speed is measured as the time required for the average specimen ac-

curacy4647 of TM-GA0 to reach a certain convergence target. Time is measured by the

number of fitness-function evaluations. The convergence target for Testbed Problem

2 is set as the accuracy corresponding to the 95th-percentile (i.e. 95%) of the C4.5 De-

cision Trees program’s accuracy. C4.5’s accuracy is obtained from Table 5.17, which

presents averaged results from multiple cross-validation runs. This convergence target

prevents TM-GA0 from undershooting the target accuracy, since TM-GA0 explicitly

avoids over-fitting the decision trees during the genetic search process.

For each UCI data set and each strategy, Table 5.15 gives the time needed by the

average specimen to reach the 95th-percentile of the C4.5 Decision Trees program’s

accuracy from Table 5.17. The bullet symbol (”•”) indicates that the value achieved

by an IM-GA mating strategy is statistically better than that achieved by TM-GA0

(which relies on the conventional mating strategy). Conversely, the checkbox symbol

46The average specimen accuracy is measured as the average classification accuracy of the classi-
fiers represented by the GA population.

47Using the GA population’s average accuracy is more objective than using the top-fitness speci-
men’s accuracy because the latter can be good by mere chance.
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(”⊠”) identifies those cases where IM-GA performed statistically worse than TM-

GA0.

The table shows that strategies IM-D-H (TM-GA2), IM-D-CMW (TM-GA4), and

IM-MP (TM-GA5) converged statistically faster than TM-GA0 in thirteen, twelve,

and twelve data sets, respectively. In all of the remaining cases, the convergence speed

of “instinct-based” mating was comparable to that of TM-GA0.

The conclusion is that the IM-GA “instinct-based” mating strategies speed-up

convergence in many UCI data sets. Also, all strategies performed comparably under

this criterium. In 8 of the 22 data sets, no significant acceleration was observed.

5.2.4 Performance on Auxiliary Criteria

Having shown that the primary goal of accelerated convergence by the IM-GA “instinct-

based” mating strategies on the baseline TM-GA0 has been achieved, it is imperative

to ensure that this improvements do not come at the cost of lower quality of the in-

duced decision forest classifiers. To ascertain this, the performance of TM-GA0 with

and without “instinct-based” mating is investigated along the six criteria that were

described in Section 2.3:

1. Classification accuracy: The percentage of correctly classified testing examples

by the induced decision forests (i.e. independent data set);

2. Attribute set reduction: The ability to remove irrelevant attributes from the

training data set, measured as the percentage of attributes retained at the end

of the GA run by the induced decision forests, and;
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3. Decision forest complexity: The size of an induced decision forest is measured

using four relevant criteria: a) the number of trees making up the decision forest

(or ensemble size), b) the total number of nodes in the decision forest, c) the

total number of leaves (or decision rules) in the decision forest, and d) the sum

of the “average number of tests required to classify an unknown example” by

each decision trees in the decision forest.

Recall that the “original” attributes in the UCI data sets may be relevant, irrel-

evant, or redundant. However, the randomly generated attributes that were “artifi-

cially” added to the UCI data sets are always irrelevant. The accuracy of decision

forests may be adversely affected by the removal of the “original” attributes, but

probably not by the removal of “artificial” attributes.

The experimental results presented here primarily compare the behaviors of the

proposed IM-GA “instinct-based” mating strategies to that of TM-GA0. However,

performance comparisons between TM-GA0 and (1) the three classical ensemble gen-

eration techniques of Bagging, AdaBoost, and Random Forests and (2) the C4.5

Decision Trees program are also presented to ensure that TM-GA0 is not a weak GA

that can be easily improved upon by the IM-GA mating strategies.

Classification Accuracy

Table 5.16 shows the classification accuracy achieved by decision forests generated by

TM-GA0 with different IM-GA mating strategies in the UCI data sets . The results

indicate that all IM-GA mating strategies reach classification accuracies comparable

to that of TM-GA0. The conclusion is that the faster convergence promoted by the
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IM-GA “instinct-based” mating strategies on TM-GA0 does not come at the cost of

lower classification accuracy of the induced decision forests.

Tables 5.17 and 5.18, respectively, compare TM-GA0’s classification accuracy

against that achieved by the three classical techniques when using ensembles of both

25 and 50 decision trees. Table 5.17 also shows the C4.5 Decision Trees program

accuracy for comparison against the baseline TM-GA0. The bullet (”•”) indicates

that the value achieved by a given classical technique is statistically better than that

achieved by TM-GA0 according to the paired t-test. The checkbox symbol (”⊠”)

identifies those cases where a given technique performed statistically worse than the

TM-GA0.

In Table 5.17, the results are very favorable for TM-GA0, who outperforms all

three classical techniques built ensembles of 25 decision trees. TM-GA0 outperforms

Bagging, AdaBoost, Random Forests, and C4.5 in four, six, seven, and twenty data

sets, respectively. The best of the “competitors” are Adaboost and Random Forests,

which outperformed TM-GA0 in two and three data sets respectively. In all other

cases, the performances are comparable. Notice that the decision forests induced by

TM-GA0 almost always outperform the C4.5.

However, the results in Table 5.18 are more balanced since the three classical tech-

niques now employ ensembles of 50 decision trees instead of 25. Overall, the accuracy

of all classical techniques improve with the larger ensemble size. However, TM-GA0

still outperforms Bagging and AdaBoost in three and six data sets, respectively, being

outperformed by AdaBoost in only four data sets. Also, TM-GA0 ties with Random

Forests, performing both statistically better and worse in five data sets. Note an im-
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portant detail in these results: increasing the ensemble size of the classical techniques

beyond what was suggested in the literature only marginally improved their classifi-

cation accuracies. This is the reason why Breiman (1996) suggested ensembles of 25

decision trees in experiments with UCI data sets, because he found that this choice of

ensemble size provided a good trade-off between ensemble accuracy and size; in some

experiments, he reported that larger ensembles actually damaged performance.

At the same, the classification costs of the classical techniques skyrocketed by

doubling their ensemble sizes from 25 to 50 decision trees, while the interpretability of

their results were further severely worsened. However, it can be argued that even with

ensembles of 25 decision trees, the interpretability of the decision forests generated by

the classical techniques has already been irrecoverably damaged Breiman (1996). The

next few sections will reveal that the results achieved by TM-GA0 are done so with

significantly smaller ensembles (in the order of 3 to 7 decision trees) requiring only a

slim fraction of the classifications costs of the other techniques. TM-GA0 can achieve

that because it approaches the ensemble learning problem from multiple perspectives

and not only accuracy, as is done by the classical techniques.

The conclusion from these results is that the IM-GA mating strategies do not

impact the classification accuracy of the decision forests induced by TM-GA0. Also,

TM-GA0 outperforms well-established classical techniques of ensemble generation in

terms of classification accuracy, performing particularly well in head-to-head com-

parisons against ensembles of 25 decision trees and comparably in comparisons with

larger ensembles of 50 decision trees.
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Attribute Set Reduction

The next task is to ensure that the IM-GA mating strategies do not impact TM-

GA0’s ability to discard irrelevant attributes. In the modified data sets used in the

experiments, this ability is observed along two different criteria: 1) how many of the

“original” attributes are retained by the generated decision forests, and 2) how many

of the “artificially” added (or irrelevant) attributes are retained by the generated

decision forests.

Table 5.19 gives the percentage of “original” attributes retained by TM-GA0 and

all IM-GA mating strategies. The performances are similar, indicating that the IM-

GA mating strategies do not impact TM-GA0’s ability to optimize the “original” set

of attributes. In particular, the IM-D-H (TM-GA2) and IM-MP (TM-GA5) strategies

outperformed TM-GA0 in two and one data sets, respectively. The only statistically

worse result by an IM-GA strategy was when IM-D-CMW (TM-GA4) was applied to

the breast-c data set.

The results are similar when it comes to the ability to remove “artificially” added

irrelevant attributes. Table 5.20 indicates that the IM-GA strategies perform as well

as TM-GA0 in this task, IM-D-H (TM-GA2) and IM-MP (TM-GA5) occasionally im-

proving the results. The only exceptions were IM-D-CMW (TM-GA4) when applied

to the crx data set and IM-MP (TM-GA5) when applied to the breast-c data set.

Notice also that the increase in irrelevant attributes retained IM-D-CMW (TM-GA4)

is tolerable for practical applications (only 0.3%).
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Table 5.21 shows that none of the classical techniques (using ensembles of 25

decision trees) performed as well as TM-GA0 in handling the attributes set, the only

exceptions being where all techniques were applied to the balance and tic-tac-toe

data sets. The results were worse for ensembles of 50 decision trees. Table 5.22 shows

that all classical techniques performed statistically worse in removing “artificially”

added irrelevant attributes in all data sets. This result illustrates a major issue in

classical ensemble generation techniques: their lack of provisions for optimizing the

training data sets used to induce the classifiers. TM-GA0, which relies on a multi-

objective genetic search, has an advantage in that aspect. The classical techniques,

in contrast, are simply statistical tools that require large number of classifiers to work

properly, while having no provisions for optimizing the individual classifiers.

The conclusion from these results is that the IM-GA “instinct-based” mating

strategies do not impact TM-GA0’s ability to optimize the attribute set and discard

irrelevant attributes. The results also show that TM-GA0 statistically outperforms the

other tested techniques in distinguishing between relevant and irrelevant attributes

in a data set.

Classification Costs Reduction

Finally, let us ensure that the IM-GA mating strategies do not produce larger decision

forests having higher classification costs and memory footprint. Also, let us investigate

the complexity (or size) of the decision forests induced by the baseline TM-GA0

when compared to those induced by the three classical techniques (using ensembles

of 25 decision trees). The criteria used are: 1) the decision forest size (i.e. number
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of decision trees), 2) the total number of nodes in the decision forest, 3) the total

number of leaves in the forest, and 4) the total number of average tests required by

the individual decision trees in a forest to classify an unknown example.

As an illustration of the average size of the decision forests induced by the different

techniques, Table 5.23 gives the number of decision trees making up the decision

forests induced by TM-GA0 and all IM-GA strategies. No statistical significance

comparisons are made because the other criteria will more adequately capture the

structural complexity of the decision forests. Notice from Table 5.23 that the average

size of the decision forests vary from 3 to 7 decision trees, most decision forest having

an average of 3 decision trees. In contrast, the classical techniques required at least

25 to 50 decision trees to achieve classification accuracies similar to that of TM-GA0.

This results indicates that the decision forests induced by TM-GA0 are more accurate

(i.e. less over-fit) and more capable of correcting each others’ classification errors (i.e.

more diverse) than those induced by the classical techniques. This is a result of TM-

GA0’s ability to optimize the training data sets used to induce the individual decision

trees.

Table 5.24 compares the total number of nodes in the decision forests induced by

the baseline TM-GA0 and the IM-GA mating strategies. The results are comparable,

with all IM-GA strategies occasionally reducing the total number of nodes in their

induced decision forests. More specifically, IM-D-H (TM-GA2), IM-D-CMW (TM-

GA4), and IM-MP (TM-GA5) outperformed TM-GA0 in this task in four, three, and

two data sets, respectively. IM-D-CMW (TM-GA4) performs statistically worse in in

the crx data set and IM-MP (TM-GA5) in the wine data set. Table 5.25 indicates
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that the results are identical when it comes to IM-GA’s ability to reduce the number

of leaves in the decision forests. The IM-GA strategies occasionally reduce the total

number of leaves in their induced decision forests when compared to TM-GA0.

Tables 5.26 and 5.27 reveal that none of the three classical techniques (using 25

decision trees) are capable of inducing decision forests as compact as those induced

by TM-GA0. Instead, the decision forests induced by TM-GA0 correspond to small

fractions of the memory footprint (i.e. number of nodes and leaves) of those induced

by the classical techniques. The classical techniques perform statistically worse than

the baseline TM-GA0 in all data sets when it comes to the ability to minimize the

memory footprint of their induced decision forests. This is an intuitive result because,

unlike TM-GA0, the classical techniques have no provisions for optimizing the training

data sets of their individual classifiers.

Finally, Table 5.28 compares the ability of TM-GA0 and IM-GA mating strategies

to reduce the classification costs of their induced decision forests. This table gives the

sum of the average number of tests required to classify an unknown example by each

decision tree in a decision forest. Once again, the IM-GA mating strategies perform

comparably to TM-GA0, occasionally generating decision forests having statistically

lower classification costs. The only cases where an IM-GA strategy faired statistically

worse was where IM-D-H (TM-GA2) was applied to the heart data set and the IM-

D-CMW (TM-GA4) was applied to the breast-c and solar data sets. Conversely,

IM-D-H performed statistically better in four data sets, IM-D-CMW in three data

sets, and IM-MP (TM-GA5) in two data sets. All other results were statistically

comparable.
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The results are very different when the classification costs of the classical tech-

niques are compared to that of TM-GA0. Table 5.29 shows that the classical tech-

niques perform statistically worse in all data sets. The decision forests induced by

TM-GA0 require only a fraction of the average number of tests required by the deci-

sion forests induced by the classical techniques. Breiman (1996) has pointed out that

the interpretability of the results of classifier ensembles is lost in exchange for higher

classification accuracies achieved by lather ensembles. TM-GA0 is able to recover that

lost interpretability by inducing both accurate and compact, or optimal, ensembles

of decision trees.

All the results for Testbed Problem 2 presented here lead to the conclusion that

the IM-GA mating strategies are capable of accelerating the convergence speed of

TM-GA0 without impacting the accuracy or size of the induced decision forests, oc-

casionally generating more compact decision forests. In addition, the results show that

TM-GA0 outperforms three classical techniques of Bagging, AdaBoost, and Random

Forests in terms of accuracy (when the latter rely on both 25 and 50 decision trees)

and also in terms of the ability to generate compact decision forests, having accurate

and diverse decision trees with small memory footprint and reduced classification

costs. In addition, the decision forests generated by TM-GA0 always outperform

the C4.5 classifier in terms of classification accuracy. The advantages of the decision

forests generated by TM-GA0, versus those generated by the classical techniques, are:

1. They are compact, making results easy to interpret when compared to large

forests generated by classical methods;
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2. They have small memory footprint, even when converted into decision rules

(i.e. reduced number of leaves) and can be stored in memory-constrained micro-

chips, and;

3. They have a fast response time (i.e. reduced classification costs) that allow them

to be used in applications where real-time response is critical, and otherwise

large decision forests could not practically be employed.

5.2.5 Results Tables for Testbed Problem 2

All of the tables of results referenced in Sections 5.2.3 and 5.2.4 are presented in the

following pages. The tables are organized in the order referred to in the paper.
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Table 5.15: Time taken by the average specimen of the baseline TM-GA0 versus the
IM-GA mating strategies to reach the 95th-percentile of the C4.5 Decision Trees target
accuracy given in Table 5.17.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 1165.9 ± 341.2 1012.1 ± 291.7 • 981.4 ± 329.3 • 1049.8 ± 320.3 •
breast-c 2.2 ± 8.9 1.5 ± 6.0 3.1 ± 11.3 2.1 ± 6.8
breast-w 37.5 ± 19.5 39.9 ± 17.1 37.3 ± 18.5 34.7 ± 18.1
bupa 74.0 ± 40.7 71.6 ± 17.7 73.2 ± 18.6 71.6 ± 16.8
car 7451.6 ± 3810.1 5899.4 ± 2855.4 • 5945.2 ± 2852.4 • 6061.8 ± 2415.0 •
cmc 1167.5 ± 519.8 1000.4 ± 329.1 • 1009.1 ± 413.7 • 1049.6 ± 396.3
crx 66.6 ± 18.8 59.0 ± 18.3 • 63.4 ± 20.3 61.7 ± 21.6
derm 4929.4 ± 721.4 4293.6 ± 689.6 • 4457.3 ± 789.9 • 4483.6 ± 750.0 •
glass 5580.2 ± 1658.8 4796.3 ± 1421.8 • 4848.7 ± 1898.7 • 4906.5 ± 1656.3 •
haber 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
heart 518.2 ± 76.5 486.4 ± 64.4 • 459.4 ± 53.0 • 470.5 ± 75.4 •
ion 1029.3 ± 211.0 903.5 ± 116.6 • 913.5 ± 146.4 • 912.9 ± 170.9 •
iris 1658.2 ± 194.5 1473.9 ± 199.6 • 1471.9 ± 156.1 • 1453.6 ± 195.3 •
newthy 3401.1 ± 806.4 2895.5 ± 667.4 • 3009.0 ± 730.4 • 2996.5 ± 1091.1 •
pima 27.0 ± 21.1 27.0 ± 21.2 28.6 ± 21.7 27.0 ± 18.7
solar 214.0 ± 52.0 197.2 ± 53.9 186.6 ± 44.2 • 180.1 ± 43.3 •
sonar 761.6 ± 132.0 686.0 ± 124.3 • 685.8 ± 111.6 • 673.9 ± 104.0 •
tic-tac-toe 17908.1 ± 7329.8 14850.8 ± 6172.4 • 15844.8 ± 8454.3 14513.4 ± 5209.6 •
vote 701.7 ± 98.4 700.5 ± 70.0 676.8 ± 71.2 684.0 ± 81.7
wdbc 128.3 ± 20.4 128.9 ± 22.4 129.3 ± 23.2 135.5 ± 23.0
wine 2521.9 ± 449.6 2325.7 ± 448.3 • 2166.6 ± 359.2 • 2083.5 ± 314.6 •
wpbc 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Table 5.16: Classification accuracy of the baseline TM-GA0 versus the IM-GA mating
strategies.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 81.7 ± 3.4 81.6 ± 3.9 81.7 ± 3.3 81.5 ± 4.1
breast-c 72.4 ± 5.7 72.1 ± 5.5 72.0 ± 5.5 71.2 ± 5.8
breast-w 96.2 ± 1.6 95.8 ± 1.7 96.0 ± 1.4 96.2 ± 1.2
bupa 65.7 ± 5.6 65.9 ± 5.4 64.5 ± 5.7 66.3 ± 5.9
car 91.9 ± 1.9 91.4 ± 3.0 92.3 ± 1.2 91.2 ± 2.3
cmc 53.4 ± 3.6 54.2 ± 3.4 53.7 ± 3.3 53.7 ± 3.7
crx 86.4 ± 2.4 86.4 ± 2.9 86.2 ± 2.9 86.4 ± 2.5
derm 96.4 ± 2.2 96.4 ± 2.3 96.2 ± 2.0 96.3 ± 2.1
glass 69.2 ± 6.8 69.6 ± 8.0 70.4 ± 6.8 69.5 ± 7.7
haber 73.1 ± 5.5 72.9 ± 4.4 72.2 ± 5.1 73.3 ± 5.0
heart 81.5 ± 4.7 80.7 ± 5.0 80.9 ± 4.6 81.4 ± 4.7
ion 92.1 ± 2.9 91.7 ± 3.4 91.6 ± 4.1 92.3 ± 3.2
iris 93.4 ± 4.8 93.2 ± 4.0 93.3 ± 4.4 94.0 ± 4.1
newthy 93.1 ± 4.2 92.9 ± 3.7 93.4 ± 3.7 93.0 ± 4.2
pima 74.8 ± 2.8 74.5 ± 3.6 74.5 ± 3.6 74.0 ± 3.4
solar 73.6 ± 2.9 73.5 ± 2.1 73.3 ± 2.7 73.7 ± 2.6
sonar 73.3 ± 6.7 74.5 ± 6.1 72.3 ± 7.0 73.8 ± 7.4
tic-tac-toe 88.5 ± 2.9 87.3 ± 4.8 88.4 ± 3.3 87.9 ± 3.9
vote 97.0 ± 2.1 97.0 ± 2.2 97.0 ± 2.4 97.0 ± 2.0
wdbc 94.8 ± 1.8 94.6 ± 2.1 95.0 ± 1.6 95.1 ± 1.7
wine 94.8 ± 3.8 94.2 ± 4.9 94.9 ± 3.3 95.1 ± 4.2
wpbc 76.2 ± 6.4 75.9 ± 6.3 76.1 ± 6.3 76.3 ± 6.2
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Table 5.17: Classification accuracy of the baseline TM-GA0 versus the non-GA-based
techniques of Bagging, AdaBoost, and Random Forests (ensemble size 25) and C4.5.

Data Set TM-GA0 Bagging AdaBoost RF C4.5

balance 81.7 ± 3.4 81.3 ± 3.9 82.8 ± 3.1 82.0 ± 2.5 77.6 ± 3.6 ⊠

breast-c 72.4 ± 5.7 68.8 ± 7.0 ⊠ 68.7 ± 5.3 ⊠ 70.7 ± 4.3 ⊠ 70.0 ± 5.8 ⊠

breast-w 96.2 ± 1.6 96.0 ± 1.6 96.6 ± 1.4 96.8 ± 1.4 • 94.4 ± 2.1 ⊠

bupa 65.7 ± 5.6 67.4 ± 5.2 65.3 ± 4.4 65.9 ± 5.0 61.1 ± 5.6 ⊠

car 91.9 ± 1.9 91.5 ± 1.5 92.8 ± 1.5 • 90.1 ± 1.6 ⊠ 87.3 ± 2.2 ⊠

cmc 53.4 ± 3.6 52.3 ± 2.9 51.3 ± 3.0 ⊠ 50.1 ± 2.7 ⊠ 50.5 ± 2.7 ⊠

crx 86.4 ± 2.4 85.7 ± 2.6 85.7 ± 2.8 84.7 ± 3.0 ⊠ 85.9 ± 2.4
derm 96.4 ± 2.2 95.8 ± 2.3 96.2 ± 2.6 95.6 ± 2.2 ⊠ 92.5 ± 4.1 ⊠

glass 69.2 ± 6.8 67.8 ± 6.4 69.5 ± 6.3 70.5 ± 7.4 63.3 ± 6.8 ⊠

haber 73.1 ± 5.5 71.7 ± 4.5 69.4 ± 5.2 ⊠ 71.5 ± 5.4 71.0 ± 6.4 ⊠

heart 81.5 ± 4.7 79.6 ± 5.4 ⊠ 80.0 ± 4.8 80.7 ± 5.8 76.3 ± 6.1 ⊠

ion 92.1 ± 2.9 91.7 ± 3.3 92.3 ± 3.7 92.3 ± 2.5 88.7 ± 4.1 ⊠

iris 93.4 ± 4.8 93.5 ± 4.5 94.1 ± 3.9 94.4 ± 3.1 93.9 ± 3.9
newthy 93.1 ± 4.2 93.7 ± 3.5 93.8 ± 2.9 94.8 ± 3.6 • 90.8 ± 4.6 ⊠

pima 74.8 ± 2.8 74.2 ± 3.6 74.3 ± 3.0 74.8 ± 3.4 72.4 ± 3.8 ⊠

solar 73.6 ± 2.9 72.4 ± 2.2 ⊠ 72.3 ± 2.5 ⊠ 73.1 ± 1.6 70.3 ± 2.6 ⊠

sonar 73.3 ± 6.7 74.6 ± 5.4 75.4 ± 6.4 75.0 ± 6.4 68.0 ± 7.2 ⊠

tic-tac-toe 88.5 ± 2.9 87.6 ± 2.6 82.5 ± 3.0 ⊠ 77.4 ± 3.3 ⊠ 81.3 ± 3.6 ⊠

vote 97.0 ± 2.1 96.0 ± 2.5 ⊠ 96.3 ± 2.4 95.1 ± 3.2 ⊠ 96.8 ± 2.5
wdbc 94.8 ± 1.8 95.0 ± 1.9 95.8 ± 2.1 • 95.4 ± 1.8 93.3 ± 2.7 ⊠

wine 94.8 ± 3.8 95.4 ± 2.9 95.5 ± 3.8 97.4 ± 2.3 • 89.2 ± 7.0 ⊠

wpbc 76.2 ± 6.4 74.6 ± 7.2 73.6 ± 7.2 ⊠ 76.3 ± 6.6 74.6 ± 6.7
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Table 5.18: Classification accuracy of the baseline TM-GA0 versus the non-GA-based
techniques of Bagging, AdaBoost, and Random Forests (ensemble size 50).

Data Set TM-GA0 Bagging AdaBoost RF

balance 81.7 ± 3.4 81.7 ± 2.9 84.2 ± 3.7 • 83.0 ± 3.5 •
breast-c 72.4 ± 5.7 71.7 ± 5.7 69.1 ± 4.7 ⊠ 71.3 ± 5.1
breast-w 96.2 ± 1.6 96.3 ± 1.5 96.5 ± 1.5 97.0 ± 1.2 •
bupa 65.7 ± 5.6 67.1 ± 6.3 67.2 ± 5.5 64.8 ± 5.4
car 91.9 ± 1.9 91.8 ± 1.5 93.6 ± 1.3 • 90.9 ± 1.6 ⊠

cmc 53.4 ± 3.6 52.6 ± 3.0 51.4 ± 2.7 ⊠ 51.0 ± 2.8 ⊠

crx 86.4 ± 2.4 85.9 ± 3.1 86.0 ± 3.3 85.4 ± 2.7 ⊠

derm 96.4 ± 2.2 95.4 ± 2.7 ⊠ 96.6 ± 2.0 96.6 ± 2.0
glass 69.2 ± 6.8 67.9 ± 6.5 68.4 ± 6.6 71.5 ± 7.3
haber 73.1 ± 5.5 70.2 ± 4.3 ⊠ 70.3 ± 5.5 ⊠ 72.4 ± 6.0
heart 81.5 ± 4.7 79.9 ± 4.8 ⊠ 80.5 ± 5.5 81.6 ± 4.7
ion 92.1 ± 2.9 91.9 ± 3.4 92.6 ± 2.7 92.9 ± 3.0
iris 93.4 ± 4.8 94.6 ± 3.7 94.0 ± 4.8 94.5 ± 3.5
newthy 93.1 ± 4.2 93.9 ± 3.4 94.3 ± 3.3 94.9 ± 3.7 •
pima 74.8 ± 2.8 74.5 ± 2.7 74.9 ± 3.1 75.7 ± 3.4
solar 73.6 ± 2.9 73.3 ± 2.1 72.4 ± 2.6 ⊠ 73.5 ± 2.0
sonar 73.3 ± 6.7 75.4 ± 6.3 77.0 ± 8.3 • 78.1 ± 6.2 •
tic-tac-toe 88.5 ± 2.9 88.4 ± 2.7 83.3 ± 2.6 ⊠ 78.9 ± 3.4 ⊠

vote 97.0 ± 2.1 96.3 ± 2.5 95.9 ± 2.2 ⊠ 95.0 ± 3.1 ⊠

wdbc 94.8 ± 1.8 95.2 ± 2.2 95.8 ± 2.1 • 95.4 ± 2.0
wine 94.8 ± 3.8 94.5 ± 3.8 95.5 ± 4.0 97.9 ± 2.2 •
wpbc 76.2 ± 6.4 75.5 ± 6.3 75.4 ± 6.3 76.3 ± 5.6
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Table 5.19: Percentage of original attributes retained by the baseline TM-GA0 versus
the IM-GA mating strategies.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
breast-c 29.6 ± 10.7 30.2 ± 10.5 33.1 ± 7.6 ⊠ 29.8 ± 11.1
breast-w 50.0 ± 11.9 49.3 ± 12.3 49.1 ± 12.9 53.1 ± 11.1
bupa 69.3 ± 17.0 68.0 ± 20.4 73.0 ± 19.0 73.0 ± 17.8
car 92.7 ± 9.0 92.3 ± 9.0 91.7 ± 8.4 93.7 ± 8.8
cmc 44.2 ± 18.3 43.6 ± 13.8 44.7 ± 15.0 49.3 ± 18.4
crx 7.1 ± 1.6 6.7 ± 0.0 • 8.4 ± 6.1 6.8 ± 0.9
derm 30.1 ± 3.4 29.3 ± 3.9 29.7 ± 4.3 29.6 ± 4.5
glass 75.8 ± 11.4 73.6 ± 15.2 72.7 ± 11.9 76.4 ± 14.1
haber 28.0 ± 31.8 30.0 ± 33.2 24.0 ± 29.4 23.3 ± 30.3
heart 39.5 ± 7.9 41.2 ± 8.0 38.3 ± 7.7 41.1 ± 8.7
ion 19.9 ± 4.5 19.1 ± 5.0 18.4 ± 4.7 19.2 ± 4.4
iris 40.0 ± 13.4 38.5 ± 13.6 40.0 ± 13.4 41.5 ± 12.0
newthy 46.8 ± 11.9 44.0 ± 13.4 46.8 ± 13.2 46.8 ± 13.2
pima 45.0 ± 15.2 42.3 ± 17.3 46.5 ± 17.5 46.5 ± 20.2
solar 34.8 ± 10.2 31.7 ± 9.7 36.5 ± 14.1 32.8 ± 8.8
sonar 16.5 ± 7.1 11.9 ± 7.1 • 14.3 ± 7.3 13.3 ± 7.1 •
tic-tac-toe 99.3 ± 4.7 96.9 ± 9.8 99.3 ± 4.7 98.9 ± 6.4
vote 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0
wdbc 18.7 ± 4.8 17.3 ± 5.0 18.0 ± 4.6 18.3 ± 5.1
wine 29.4 ± 6.2 28.2 ± 4.8 27.8 ± 4.9 27.7 ± 4.9
wpbc 0.0 ± 0.0 0.2 ± 1.3 0.2 ± 1.3 0.2 ± 1.7
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Table 5.20: Percentage of “artificial” (irrelevant) attributes retained by the baseline
TM-GA0 and IM-GA mating strategies.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 2.5 ± 5.6 3.3 ± 6.1 1.0 ± 3.4 4.3 ± 6.5
breast-c 11.7 ± 5.4 11.6 ± 5.8 13.2 ± 5.9 14.2 ± 5.8 ⊠

breast-w 1.1 ± 2.5 1.4 ± 2.7 1.6 ± 3.0 1.1 ± 2.2
bupa 14.3 ± 15.4 17.5 ± 17.0 17.7 ± 20.7 18.8 ± 18.8
car 37.5 ± 17.6 30.7 ± 19.4 • 33.3 ± 20.7 42.5 ± 16.6
cmc 15.2 ± 26.9 15.7 ± 29.0 19.2 ± 29.9 22.7 ± 33.7
crx 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.9 ⊠ 0.0 ± 0.0
derm 0.5 ± 1.0 0.4 ± 0.9 0.3 ± 1.0 0.5 ± 1.1
glass 10.2 ± 7.1 8.2 ± 7.0 8.6 ± 6.7 12.1 ± 8.0
haber 11.3 ± 14.1 12.3 ± 15.7 12.0 ± 16.5 11.0 ± 16.4
heart 3.9 ± 3.0 4.0 ± 3.3 3.7 ± 3.5 3.8 ± 3.2
ion 0.7 ± 1.1 0.9 ± 1.4 0.8 ± 1.3 0.8 ± 1.2
iris 1.3 ± 3.8 1.0 ± 3.4 1.0 ± 4.3 1.0 ± 3.4
newthy 2.4 ± 4.3 3.0 ± 4.6 2.6 ± 4.9 4.0 ± 5.7
pima 9.1 ± 11.2 8.0 ± 11.4 9.9 ± 16.3 13.3 ± 18.9
solar 16.8 ± 26.5 13.0 ± 20.1 23.0 ± 33.6 12.3 ± 18.4
sonar 1.6 ± 1.4 0.9 ± 1.2 • 1.2 ± 1.2 1.1 ± 1.4 •
tic-tac-toe 32.8 ± 15.7 31.0 ± 16.9 35.1 ± 13.7 36.2 ± 13.6
vote 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
wdbc 0.7 ± 1.1 0.5 ± 1.2 0.5 ± 1.0 0.8 ± 1.3
wine 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
wpbc 0.0 ± 0.0 0.0 ± 0.2 0.1 ± 0.6 0.2 ± 1.3
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Table 5.21: Percentage of original attributes retained by the baseline TM-GA0 versus
the non-GA-based techniques of Bagging, AdaBoost, and Random Forests (ensemble
size 25).

Data Set TM-GA0 Bagging AdaBoost RF

balance 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
breast-c 29.6 ± 10.7 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

breast-w 50.0 ± 11.9 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

bupa 69.3 ± 17.0 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

car 92.7 ± 9.0 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

cmc 44.2 ± 18.3 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

crx 7.1 ± 1.6 93.3 ± 0.0 ⊠ 93.3 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

derm 30.1 ± 3.4 72.5 ± 7.2 ⊠ 92.5 ± 7.9 ⊠ 100.0 ± 0.0 ⊠

glass 75.8 ± 11.4 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

haber 28.0 ± 31.8 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

heart 39.5 ± 7.9 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 99.8 ± 1.1 ⊠

ion 19.9 ± 4.5 83.1 ± 6.2 ⊠ 82.3 ± 16.4 ⊠ 96.9 ± 0.6 ⊠

iris 40.0 ± 13.4 94.0 ± 12.9 ⊠ 93.5 ± 14.1 ⊠ 100.0 ± 0.0 ⊠

newthy 46.8 ± 11.9 100.0 ± 0.0 ⊠ 99.2 ± 4.0 ⊠ 100.0 ± 0.0 ⊠

pima 45.0 ± 15.2 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

solar 34.8 ± 10.2 91.7 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 99.8 ± 1.2 ⊠

sonar 16.5 ± 7.1 80.8 ± 5.1 ⊠ 73.7 ± 10.4 ⊠ 97.8 ± 1.6 ⊠

tic-tac-toe 99.3 ± 4.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
vote 6.3 ± 0.0 43.6 ± 10.2 ⊠ 68.3 ± 23.4 ⊠ 98.5 ± 2.7 ⊠

wdbc 18.7 ± 4.8 86.1 ± 6.0 ⊠ 85.0 ± 13.8 ⊠ 100.0 ± 0.0 ⊠

wine 29.4 ± 6.2 83.2 ± 8.3 ⊠ 77.8 ± 21.8 ⊠ 100.0 ± 0.0 ⊠

wpbc 0.0 ± 0.0 79.2 ± 6.5 ⊠ 67.6 ± 17.7 ⊠ 99.5 ± 1.1 ⊠
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Table 5.22: Percentage of “artificial” (irrelevant) attributes retained by the baseline
TM-GA0 versus the non-GA-based techniques of Bagging, AdaBoost, and Random
Forests (ensemble size 25).

Data Set TM-GA0 Bagging AdaBoost RF

balance 2.5 ± 5.6 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

breast-c 11.7 ± 5.4 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

breast-w 1.1 ± 2.5 92.3 ± 7.0 ⊠ 99.8 ± 1.1 ⊠ 100.0 ± 0.0 ⊠

bupa 14.3 ± 15.4 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

car 37.5 ± 17.6 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

cmc 15.2 ± 26.9 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

crx 0.0 ± 0.0 99.7 ± 0.9 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

derm 0.5 ± 1.0 20.1 ± 5.2 ⊠ 53.4 ± 11.5 ⊠ 99.5 ± 0.8 ⊠

glass 10.2 ± 7.1 99.7 ± 1.3 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

haber 11.3 ± 14.1 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

heart 3.9 ± 3.0 98.4 ± 2.3 ⊠ 99.9 ± 0.5 ⊠ 100.0 ± 0.0 ⊠

ion 0.7 ± 1.1 54.9 ± 6.8 ⊠ 73.8 ± 18.0 ⊠ 95.3 ± 2.8 ⊠

iris 1.3 ± 3.8 49.3 ± 23.5 ⊠ 74.5 ± 33.1 ⊠ 99.8 ± 1.8 ⊠

newthy 2.4 ± 4.3 48.0 ± 17.6 ⊠ 82.0 ± 24.1 ⊠ 99.6 ± 2.0 ⊠

pima 9.1 ± 11.2 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

solar 16.8 ± 26.5 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

sonar 1.6 ± 1.4 43.4 ± 4.7 ⊠ 51.6 ± 7.8 ⊠ 85.1 ± 3.4 ⊠

tic-tac-toe 32.8 ± 15.7 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠ 100.0 ± 0.0 ⊠

vote 0.0 ± 0.0 37.1 ± 9.9 ⊠ 65.5 ± 26.9 ⊠ 100.0 ± 0.0 ⊠

wdbc 0.7 ± 1.1 43.1 ± 7.1 ⊠ 71.3 ± 15.0 ⊠ 92.2 ± 4.0 ⊠

wine 0.0 ± 0.0 6.8 ± 4.9 ⊠ 26.2 ± 16.3 ⊠ 88.7 ± 6.4 ⊠

wpbc 0.0 ± 0.0 80.1 ± 4.5 ⊠ 78.1 ± 19.9 ⊠ 97.1 ± 1.8 ⊠
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Table 5.23: Number of decision trees in the decision forests induced by the baseline
TM-GA0 versus the IM-GA mating strategies.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 3.0 ± 0.1 3.0 ± 0.1 3.0 ± 0.1 3.2 ± 0.5
breast-c 3.0 ± 0.2 3.2 ± 0.8 3.1 ± 0.3 3.1 ± 0.6
breast-w 3.0 ± 0.0 3.0 ± 0.2 3.1 ± 0.2 3.0 ± 0.1
bupa 3.0 ± 0.2 3.0 ± 0.2 3.0 ± 0.1 3.0 ± 0.1
car 3.0 ± 0.0 3.0 ± 0.2 3.0 ± 0.0 3.1 ± 0.3
cmc 3.2 ± 0.5 3.1 ± 0.4 3.1 ± 0.3 3.2 ± 0.4
crx 3.9 ± 1.0 3.7 ± 0.8 4.0 ± 1.1 3.7 ± 0.9
derm 3.1 ± 0.2 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0
glass 3.1 ± 0.3 3.1 ± 0.3 3.1 ± 0.2 3.1 ± 0.4
haber 5.3 ± 1.9 5.1 ± 2.0 5.3 ± 2.0 5.5 ± 1.9
heart 3.0 ± 0.1 3.0 ± 0.1 3.0 ± 0.1 3.0 ± 0.0
ion 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.1
iris 3.6 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.4 ± 0.5
newthy 3.1 ± 0.2 3.1 ± 0.3 3.0 ± 0.1 3.0 ± 0.2
pima 3.1 ± 0.2 3.1 ± 0.3 3.1 ± 0.3 3.0 ± 0.2
solar 3.0 ± 0.2 3.2 ± 0.4 3.2 ± 0.4 3.1 ± 0.3
sonar 3.0 ± 0.1 3.0 ± 0.0 3.0 ± 0.1 3.0 ± 0.2
tic-tac-toe 3.0 ± 0.3 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.3
vote 3.3 ± 0.6 3.2 ± 0.4 3.3 ± 0.5 3.3 ± 0.5
wdbc 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.2
wine 3.0 ± 0.1 3.0 ± 0.1 3.0 ± 0.2 3.0 ± 0.0
wpbc 7.0 ± 0.0 6.9 ± 0.7 6.9 ± 0.7 6.9 ± 0.6



www.manaraa.com

235

Table 5.24: Total nodes in decision forest for the baseline TM-GA0 versus the IM-GA
mating strategies.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 88.4 ± 41.5 82.4 ± 45.9 76.7 ± 41.2 87.8 ± 40.1
breast-c 27.0 ± 10.3 26.5 ± 10.3 27.1 ± 7.7 25.7 ± 10.0
breast-w 21.7 ± 3.5 22.6 ± 5.6 22.1 ± 4.3 21.5 ± 4.3
bupa 59.8 ± 39.6 68.9 ± 48.8 67.8 ± 47.1 68.4 ± 46.8
car 498.2 ± 65.7 481.6 ± 108.3 505.3 ± 30.5 493.8 ± 108.2
cmc 252.5 ± 409.6 239.4 ± 409.8 259.2 ± 384.9 308.2 ± 456.7
crx 12.1 ± 3.1 11.2 ± 2.4 13.9 ± 6.8 ⊠ 11.3 ± 2.7
derm 79.6 ± 8.1 78.5 ± 3.6 78.7 ± 4.8 77.7 ± 5.3
glass 118.7 ± 17.0 113.7 ± 15.7 116.1 ± 14.2 118.4 ± 23.1
haber 13.9 ± 9.5 14.2 ± 9.1 14.3 ± 11.2 12.9 ± 9.2
heart 19.0 ± 6.5 22.1 ± 11.9 19.1 ± 6.7 20.4 ± 7.8
ion 35.3 ± 8.6 35.9 ± 9.5 33.4 ± 7.7 34.6 ± 8.2
iris 21.4 ± 3.6 20.7 ± 3.8 20.1 ± 3.2 • 20.3 ± 3.1 •
newthy 26.5 ± 4.2 25.4 ± 4.6 25.0 ± 4.5 • 26.4 ± 5.2
pima 38.3 ± 35.5 35.2 ± 39.0 42.8 ± 48.8 46.8 ± 57.9
solar 144.6 ± 181.5 124.2 ± 135.8 201.6 ± 250.8 111.5 ± 107.2
sonar 42.0 ± 21.8 28.0 ± 20.2 • 34.8 ± 21.4 32.3 ± 20.7 •
tic-tac-toe 424.0 ± 67.8 387.8 ± 119.8 • 425.2 ± 63.8 426.5 ± 74.7
vote 10.0 ± 1.7 9.5 ± 1.1 • 9.9 ± 1.6 9.9 ± 1.6
wdbc 33.4 ± 5.4 29.0 ± 7.8 • 29.8 ± 6.7 • 31.9 ± 9.5
wine 23.5 ± 3.0 23.5 ± 3.1 23.8 ± 3.7 24.6 ± 2.8 ⊠

wpbc 7.0 ± 0.0 7.2 ± 1.1 7.3 ± 1.7 7.4 ± 2.8
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Table 5.25: Total leaves in decision forest for the baseline TM-GA0 versus the IM-GA
mating strategies.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 45.7 ± 20.7 42.7 ± 23.0 39.8 ± 20.6 45.5 ± 20.2
breast-c 17.9 ± 7.5 17.1 ± 6.9 18.2 ± 5.5 16.6 ± 6.1
breast-w 12.3 ± 1.8 12.8 ± 2.9 12.6 ± 2.2 12.3 ± 2.1
bupa 31.4 ± 19.8 36.0 ± 24.4 35.4 ± 23.6 35.7 ± 23.4
car 351.0 ± 46.7 341.3 ± 76.8 356.4 ± 22.1 346.2 ± 76.0
cmc 139.1 ± 218.1 131.4 ± 214.3 141.9 ± 203.1 168.2 ± 239.9
crx 8.1 ± 2.1 7.5 ± 1.6 9.3 ± 4.6 ⊠ 7.5 ± 1.8
derm 60.2 ± 6.1 59.4 ± 2.7 59.6 ± 3.5 58.8 ± 3.9
glass 60.9 ± 8.6 58.4 ± 7.9 59.6 ± 7.2 60.8 ± 11.7
haber 9.6 ± 4.1 9.7 ± 3.9 9.8 ± 4.9 9.3 ± 4.1
heart 11.0 ± 3.2 12.6 ± 6.0 11.0 ± 3.3 11.7 ± 3.9
ion 19.2 ± 4.3 19.4 ± 4.8 18.2 ± 3.9 18.8 ± 4.1
iris 12.5 ± 1.9 12.1 ± 2.0 11.8 ± 1.7 • 11.9 ± 1.7 •
newthy 14.8 ± 2.2 14.3 ± 2.3 14.0 ± 2.2 • 14.7 ± 2.6
pima 20.7 ± 17.7 19.1 ± 19.5 23.0 ± 24.4 24.9 ± 29.0
solar 91.8 ± 94.6 81.4 ± 71.4 121.5 ± 131.8 74.4 ± 55.8
sonar 22.5 ± 10.9 15.5 ± 10.1 • 18.9 ± 10.7 17.7 ± 10.4 •
tic-tac-toe 277.5 ± 44.0 253.9 ± 78.0 • 277.4 ± 41.1 278.5 ± 48.8
vote 6.6 ± 1.1 6.3 ± 0.7 • 6.6 ± 1.1 6.6 ± 1.1
wdbc 18.2 ± 2.7 16.0 ± 3.9 • 16.4 ± 3.3 • 17.5 ± 4.8
wine 13.3 ± 1.5 13.2 ± 1.6 13.4 ± 1.9 13.8 ± 1.4 ⊠

wpbc 7.0 ± 0.0 7.0 ± 0.3 7.1 ± 0.6 7.2 ± 1.1
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Table 5.26: Total nodes in decision forest for the baseline TM-GA0 versus the non-
GA-based techniques of Bagging, AdaBoost, and Random Forests (ensemble size 25).

Data Set TM-GA0 Bagging AdaBoost RF

balance 88.4 ± 41.5 2318.6 ± 80.2 ⊠ 2491.8 ± 66.6 ⊠ 4241.3 ± 85.6 ⊠

breast-c 27.0 ± 10.3 2075.8 ± 108.7 ⊠ 2743.5 ± 124.8 ⊠ 3199.2 ± 117.6 ⊠

breast-w 21.7 ± 3.5 607.7 ± 43.9 ⊠ 654.6 ± 36.7 ⊠ 1140.7 ± 56.6 ⊠

bupa 59.8 ± 39.6 1417.6 ± 40.5 ⊠ 1098.2 ± 30.8 ⊠ 2329.1 ± 42.0 ⊠

car 498.2 ± 65.7 4608.5 ± 82.9 ⊠ 6670.5 ± 137.0 ⊠ 10277.0 ± 284.4 ⊠

cmc 252.5 ± 409.6 9283.7 ± 107.6 ⊠ 10471.0 ± 103.7 ⊠ 15885.2 ± 135.8 ⊠

crx 12.1 ± 3.1 2183.0 ± 137.3 ⊠ 4010.2 ± 155.5 ⊠ 4374.2 ± 186.4 ⊠

derm 79.6 ± 8.1 971.6 ± 49.6 ⊠ 1124.8 ± 248.7 ⊠ 2976.6 ± 133.1 ⊠

glass 118.7 ± 17.0 1004.4 ± 36.7 ⊠ 988.4 ± 34.9 ⊠ 1910.3 ± 55.2 ⊠

haber 13.9 ± 9.5 1547.8 ± 65.8 ⊠ 1576.8 ± 88.9 ⊠ 2575.8 ± 95.1 ⊠

heart 19.0 ± 6.5 874.0 ± 40.8 ⊠ 805.4 ± 32.0 ⊠ 1507.5 ± 47.8 ⊠

ion 35.3 ± 8.6 541.3 ± 29.7 ⊠ 505.4 ± 124.8 ⊠ 1174.3 ± 46.3 ⊠

iris 21.4 ± 3.6 204.1 ± 21.7 ⊠ 186.4 ± 101.1 ⊠ 456.4 ± 38.5 ⊠

newthy 26.5 ± 4.2 321.0 ± 19.3 ⊠ 271.0 ± 84.5 ⊠ 534.1 ± 39.6 ⊠

pima 38.3 ± 35.5 2356.1 ± 49.8 ⊠ 2012.9 ± 45.9 ⊠ 4208.8 ± 74.6 ⊠

solar 144.6 ± 181.5 5987.0 ± 129.9 ⊠ 7904.0 ± 172.5 ⊠ 12292.0 ± 386.0 ⊠

sonar 42.0 ± 21.8 544.4 ± 18.5 ⊠ 448.4 ± 62.2 ⊠ 1094.8 ± 24.0 ⊠

tic-tac-toe 424.0 ± 67.8 3736.2 ± 59.7 ⊠ 4674.3 ± 99.1 ⊠ 6886.0 ± 131.6 ⊠

vote 10.0 ± 1.7 209.1 ± 24.6 ⊠ 243.6 ± 109.9 ⊠ 809.3 ± 69.3 ⊠

wdbc 33.4 ± 5.4 483.5 ± 26.4 ⊠ 486.5 ± 98.9 ⊠ 1049.2 ± 53.7 ⊠

wine 23.5 ± 3.0 245.0 ± 15.4 ⊠ 186.9 ± 89.6 ⊠ 590.0 ± 29.3 ⊠

wpbc 7.0 ± 0.0 531.7 ± 25.3 ⊠ 423.8 ± 120.0 ⊠ 989.0 ± 47.3 ⊠
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Table 5.27: Total leaves in decision forest for the baseline TM-GA0 versus the non-
GA-based techniques of Bagging, AdaBoost, and Random Forests (ensemble size 25).

Data Set TM-GA0 Bagging AdaBoost RF

balance 45.7 ± 20.7 1171.8 ± 40.1 ⊠ 1258.4 ± 33.3 ⊠ 2133.2 ± 42.8 ⊠

breast-c 17.9 ± 7.5 1581.2 ± 94.2 ⊠ 2198.1 ± 113.4 ⊠ 2328.6 ± 102.3 ⊠

breast-w 12.3 ± 1.8 316.4 ± 21.9 ⊠ 339.8 ± 18.3 ⊠ 582.8 ± 28.3 ⊠

bupa 31.4 ± 19.8 721.3 ± 20.3 ⊠ 561.6 ± 15.4 ⊠ 1177.1 ± 21.0 ⊠

car 351.0 ± 46.7 3118.1 ± 59.0 ⊠ 4364.4 ± 86.2 ⊠ 6369.1 ± 172.4 ⊠

cmc 139.1 ± 218.1 5253.0 ± 71.8 ⊠ 6277.9 ± 81.6 ⊠ 8660.6 ± 90.7 ⊠

crx 8.1 ± 2.1 1553.6 ± 114.1 ⊠ 3168.1 ± 140.7 ⊠ 2813.0 ± 139.1 ⊠

derm 60.2 ± 6.1 716.2 ± 36.9 ⊠ 813.5 ± 179.2 ⊠ 1992.8 ± 92.7 ⊠

glass 60.9 ± 8.6 514.7 ± 18.3 ⊠ 506.7 ± 17.5 ⊠ 967.7 ± 27.6 ⊠

haber 9.6 ± 4.1 1062.9 ± 56.6 ⊠ 1071.9 ± 95.0 ⊠ 1604.6 ± 82.3 ⊠

heart 11.0 ± 3.2 449.5 ± 20.4 ⊠ 415.2 ± 16.0 ⊠ 766.2 ± 23.9 ⊠

ion 19.2 ± 4.3 283.2 ± 14.9 ⊠ 264.5 ± 65.2 ⊠ 599.6 ± 23.2 ⊠

iris 12.5 ± 1.9 114.6 ± 10.9 ⊠ 102.1 ± 55.0 ⊠ 240.7 ± 19.3 ⊠

newthy 14.8 ± 2.2 173.0 ± 9.7 ⊠ 146.8 ± 45.7 ⊠ 279.5 ± 19.8 ⊠

pima 20.7 ± 17.7 1190.5 ± 24.9 ⊠ 1019.0 ± 22.9 ⊠ 2116.9 ± 37.3 ⊠

solar 91.8 ± 94.6 3715.7 ± 100.6 ⊠ 5101.4 ± 139.6 ⊠ 7300.2 ± 254.9 ⊠

sonar 22.5 ± 10.9 284.7 ± 9.2 ⊠ 236.5 ± 32.8 ⊠ 559.9 ± 12.0 ⊠

tic-tac-toe 277.5 ± 44.0 2294.5 ± 38.5 ⊠ 2885.1 ± 60.9 ⊠ 3908.3 ± 77.5 ⊠

vote 6.6 ± 1.1 117.1 ± 12.3 ⊠ 131.9 ± 59.2 ⊠ 417.1 ± 34.6 ⊠

wdbc 18.2 ± 2.7 254.3 ± 13.2 ⊠ 255.3 ± 51.8 ⊠ 537.1 ± 26.9 ⊠

wine 13.3 ± 1.5 135.0 ± 7.7 ⊠ 103.3 ± 49.4 ⊠ 307.5 ± 14.7 ⊠

wpbc 7.0 ± 0.0 278.3 ± 12.7 ⊠ 223.4 ± 63.2 ⊠ 507.0 ± 23.7 ⊠
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Table 5.28: Average number of tests required to classify an “unknown example” for
the baseline TM-GA0 versus the IM-GA mating strategies.

Data Set TM-GA0 TM-GA2 TM-GA4 TM-GA5

balance 11.0 ± 2.4 10.8 ± 2.6 10.5 ± 2.6 11.6 ± 2.9
breast-c 4.2 ± 1.0 4.3 ± 1.5 4.6 ± 0.9 ⊠ 4.5 ± 1.2
breast-w 5.5 ± 0.6 5.7 ± 1.0 5.6 ± 0.7 5.5 ± 0.6
bupa 9.3 ± 3.4 10.0 ± 3.6 9.7 ± 3.7 9.8 ± 3.5
car 8.2 ± 0.4 8.2 ± 0.7 8.2 ± 0.2 8.3 ± 1.0
cmc 13.6 ± 7.2 12.8 ± 7.3 13.2 ± 5.9 13.9 ± 7.4
crx 4.0 ± 1.0 3.7 ± 0.8 4.2 ± 1.2 3.7 ± 0.9
derm 11.2 ± 1.1 11.0 ± 0.7 10.9 ± 0.7 10.9 ± 0.6
glass 14.6 ± 1.8 14.5 ± 1.7 14.4 ± 1.5 14.9 ± 2.3
haber 2.1 ± 2.5 2.1 ± 2.4 2.1 ± 2.5 1.8 ± 2.3
heart 4.8 ± 0.9 5.2 ± 1.6 ⊠ 4.8 ± 0.9 5.0 ± 1.1
ion 10.5 ± 1.6 10.5 ± 1.9 10.1 ± 1.5 10.4 ± 1.6
iris 6.6 ± 0.9 6.4 ± 0.9 6.3 ± 0.8 • 6.3 ± 0.8 •
newthy 7.2 ± 0.9 7.0 ± 0.9 6.8 ± 0.7 • 7.0 ± 0.7
pima 6.6 ± 2.6 6.3 ± 2.7 6.6 ± 3.0 6.9 ± 3.1
solar 6.5 ± 2.2 6.6 ± 1.6 7.6 ± 3.6 ⊠ 6.3 ± 1.6
sonar 8.0 ± 2.8 6.2 ± 2.7 • 7.2 ± 2.8 6.8 ± 2.7 •
tic-tac-toe 12.3 ± 1.6 11.6 ± 2.2 • 12.2 ± 1.1 12.3 ± 1.5
vote 3.3 ± 0.6 3.2 ± 0.4 • 3.3 ± 0.5 3.3 ± 0.5
wdbc 6.3 ± 0.5 6.0 ± 0.8 • 6.0 ± 0.7 • 6.3 ± 1.0
wine 6.6 ± 0.7 6.5 ± 0.6 6.7 ± 0.8 6.7 ± 0.5
wpbc 0.0 ± 0.0 0.1 ± 0.6 0.1 ± 0.6 0.1 ± 0.7
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Table 5.29: Average number of tests required to classify an “unknown example” for
the baseline TM-GA0 versus the non-GA-based techniques of Bagging, AdaBoost,
and Random Forests (ensemble size 25).

Data Set TM-GA0 Bagging AdaBoost RF

balance 11.0 ± 2.4 676.5 ± 13.3 ⊠ 882.1 ± 20.5 ⊠ 839.7 ± 11.2 ⊠

breast-c 4.2 ± 1.0 504.6 ± 26.6 ⊠ 643.9 ± 19.9 ⊠ 563.6 ± 21.2 ⊠

breast-w 5.5 ± 0.6 372.2 ± 15.2 ⊠ 517.0 ± 28.6 ⊠ 516.0 ± 16.5 ⊠

bupa 9.3 ± 3.4 759.7 ± 34.2 ⊠ 735.4 ± 24.2 ⊠ 891.1 ± 32.4 ⊠

car 8.2 ± 0.4 359.0 ± 1.5 ⊠ 562.6 ± 18.2 ⊠ 546.1 ± 13.9 ⊠

cmc 13.6 ± 7.2 1204.4 ± 17.7 ⊠ 1390.5 ± 26.9 ⊠ 1129.5 ± 17.8 ⊠

crx 4.0 ± 1.0 546.9 ± 17.8 ⊠ 829.9 ± 21.8 ⊠ 681.1 ± 26.1 ⊠

derm 11.2 ± 1.1 515.7 ± 11.3 ⊠ 510.1 ± 113.8 ⊠ 572.1 ± 10.6 ⊠

glass 14.6 ± 1.8 730.3 ± 26.1 ⊠ 750.3 ± 30.9 ⊠ 767.5 ± 16.8 ⊠

haber 2.1 ± 2.5 370.1 ± 15.6 ⊠ 398.3 ± 33.9 ⊠ 489.5 ± 24.6 ⊠

heart 4.8 ± 0.9 542.5 ± 19.2 ⊠ 634.4 ± 22.3 ⊠ 665.1 ± 15.3 ⊠

ion 10.5 ± 1.6 583.6 ± 26.8 ⊠ 547.9 ± 135.4 ⊠ 737.0 ± 19.1 ⊠

iris 6.6 ± 0.9 257.6 ± 11.1 ⊠ 219.8 ± 124.2 ⊠ 384.1 ± 16.4 ⊠

newthy 7.2 ± 0.9 419.1 ± 22.5 ⊠ 345.4 ± 111.0 ⊠ 489.9 ± 23.4 ⊠

pima 6.6 ± 2.6 773.4 ± 18.2 ⊠ 935.1 ± 24.2 ⊠ 949.8 ± 16.5 ⊠

solar 6.5 ± 2.2 601.2 ± 7.5 ⊠ 971.1 ± 27.2 ⊠ 849.0 ± 26.4 ⊠

sonar 8.0 ± 2.8 520.8 ± 22.7 ⊠ 493.7 ± 70.8 ⊠ 631.8 ± 13.4 ⊠

tic-tac-toe 12.3 ± 1.6 598.8 ± 15.4 ⊠ 972.0 ± 36.8 ⊠ 875.9 ± 31.8 ⊠

vote 3.3 ± 0.6 214.2 ± 15.3 ⊠ 265.9 ± 124.2 ⊠ 481.3 ± 22.7 ⊠

wdbc 6.3 ± 0.5 381.2 ± 16.2 ⊠ 446.0 ± 90.1 ⊠ 515.4 ± 17.6 ⊠

wine 6.6 ± 0.7 304.8 ± 10.4 ⊠ 243.8 ± 119.9 ⊠ 453.1 ± 15.0 ⊠

wpbc 0.0 ± 0.0 489.2 ± 27.8 ⊠ 467.8 ± 135.6 ⊠ 625.7 ± 25.0 ⊠
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CHAPTER 6

Conclusion and Ideas for Future Research

This work proposed that the search speed of the Genetic Algorithm (GA) could be

accelerated, with the quality of its generated solutions improved, by replacing the

long-standing conventional mating strategy, which is based on random selection of

mating partners, with more sophisticated mating strategies based on the Darwinian

evolutionary principle of “opposites-attract”.

To this end, a total of five (5) novel “instinct-based” mating strategies were pro-

posed, four of them as single-population GA strategies and one as multi-population

GA strategy. The proposed strategies improved over the conventional mating strat-

egy, where specimens have no mating choice, by “endowing” specimens in the GA

population with “mating-instincts” that guide them in their selection of mating part-

ners capable of “complementing” their own behaviors along some problem-dependent

optimization criteria.

To test the proposed ideas, two well-known and complex optimization problems

from the domain of supervised classification were chosen: 1) the 1-NN Tuning prob-

lem, and 2) the Optimal Decision Forests problem. Since mating is only a component

of the GA search process, two GA’s were designed and implemented to solve the two

241
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testbed problems; one GA was re-implemented from the literature and further im-

proved, the other was entirely designed for the purposes of this work. These two GAs

initially relied on the conventional mating strategy and their experimental results

served as baseline against which the performance of the proposed mating strategies

were verified.

Rigorous cross-validated experiments were run using 24 benchmark data sets from

the renowned UCI Machine Learning Repository. In the first round of experiments,

the GAs were run with the conventional mating strategy and their results were

recorded. Then, the conventional mating strategy was replaced with each of the

five (5) novel “instinct-based” mating strategies and the experiments were rerun.

The experimental results confirmed that the GA search speed was indeed acceler-

ated in both testbed problems by the application of the five (5) proposed “instinct-

based” mating strategies when compared to the conventional mating strategy. In

addition, the experimental results also revealed that the increased search speed pro-

moted by the new mating strategies (1) required only negligible additional computa-

tional power and (2) did not come at the cost of lower quality of the GA-generated

solutions. In fact, the quality of the GA-generated solutions often improved.

In addition, the experimental results also showed that the performance of the

two GAs used in this work, one improved from the literature and the other designed

entirely in this work, surpassed that of well-established, GA-based and non-GA-based,

classical techniques. The results revealed that the supervised classifiers induced by

the two GAs (i.e. the 1-NN and decision forests classifiers) were simultaneously
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more accurate and more compact than those attained by the well-established classical

techniques.

In particular, the decision forests (i.e. ensembles of C4.5 decision trees) induced by

the GA designed entirely in this work, the baseline TM-GA0, were both significantly

more accurate and compact than those induced by classical ensemble generation tech-

niques. As a consequence, the decision forests induced by TM-GA0 were character-

ized by a significantly improved interpretability of their predictions when compared

to those induced by the classical techniques. This is an important result because

the with the advent and wide adoption of classical ensemble generation techniques

over the past two decades, the “interpretability of predictions” became a lost feature.

Classical techniques trade-off the size of the decision forests for higher classification

accuracy, which severely damages the ““interpretability of predictions””. In contrast,

TM-GA0 was capable of optimizing both the accuracy and size of the decision forests

when applied to the Optimal Decision Forests problem (Testbed Problem 2).

The promising results attained in this work inspire further research. Numerous

other real-world optimization problems can benefit from an increased GA search speed

that is coupled with negligible additional computational requirements. For example,

Albert (2002) reports that in some industrial applications of the GA, evaluating the

fitness (i.e. quality) of even a single GA-generated solution may require minutes,

sometimes even days! Such applications can benefit tremendously from an improved

version of the GA that is capable of finding good solutions while requiring significantly

less fitness evaluations. The principles of “instinct-based” mating that were proposed

in this work, and also verified experimentally in Chapter 5, can pave the way to new
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implementations of the GA that are capable of more efficiently and diversely sam-

pling the vast search spaces of solutions found in numerous real-world optimization

problems.

An example of such a real-world problem is the Traveling Salesman Problem

(TSP) (Moon, Kim, Choi, and Seo 2002), a well-known NP-Hard combinatorial op-

timization problem. TSP finds several industrial applications in areas such as auto-

mated planning, logistics, and computer hardware design. Historically, the GA has

been successfully applied in the solving of complex TSP formulations comprised of

millions of interconnected nodes. Given this historical importance, investigating the

impact of “instinct-based” mating strategies on GA convergence speed when applied

to TSP is a promising area of future research; the potential impact encompasses

numerous real-world applications.

In addition to extending the principles of “instinct-based” mating to other vari-

ous real-world problems, another promising area of future research involves extending

“instinct-based” mating into other existing GA frameworks, such as the“gendered”

GA. As was discussed in Chapter 3, the “gendered” GA is a representative GA frame-

work that has been applied to various optimization problems. It is characterized by

the use of multiple fitness-functions that each seek to optimize a different subset of ob-

jectives. Thus, inspired by the results presented in this work, a research question that

naturally arises is whether “instinct-based” mating strategies can also significantly

impact the GA performance when applied to frameworks that adopt multiple fitness-

functions into the genetic search process, such as the “gendered” GA framework.
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Similarly, the potential impact of this future research topic encompasses numerous

real-world applications.

Other promising areas of future research involve a more detailed look into the the-

oretical implications of the results presented in this work; simultaneous improvements

in both GA convergence speed and quality of GA-generated solutions. Recall that

Section 1 elaborated on the importance of GA mechanisms that maintain the diversity

of the GA population during genetic search and, thus, deter the GA from converging

prematurely to suboptimal solutions. In a parallel fashion, the experimental results

presented in this work suggest that “instinct-based” mating strategies may be capable

of more efficiently maintaining the diversity of the GA population when compared to

the conventional mating strategy. Thus, a promising area for future research involves

a detailed look into the impact of “instinct-based” mating on the time-evolution of

the GA population diversity during genetic search. Promising findings may inspire

future research on the design of new mechanisms, and improvements of existing ones,

that more efficiently deter premature convergence during genetic search.

Finally, statistical modeling of the GA is another promising area of future research

with significant theoretical implications. A statistical model of the GA could be used

as a tool to judge the potential impact of various “instinct-based” mating strategies

on the convergence properties of a particular GA framework. He and Kang (1999,

Ming et al. (2006, Lin et al. (2010) have demonstrated that Markov chains can be

used as a tool to appropriately model the convergence properties of particular GA

frameworks. The task, of course, is rather non-trivial, with every GA component

(i.e. initialization, mating, recombination, mutation, and survival) contributing in a



www.manaraa.com

246

very complex fashion to the Markov Chain’s estimates of state transition probabilities.

Such a novel tool, however, would allow researchers to theoretically determine which

combination of GA framework and mating strategy performs best for a particular

application. In addition, promising results would emphasize the impact of improved

mating strategies on the performance of the GA and encourage further research on

this topic.
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